留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于叶端定时的转子叶片动应变重构不确定性量化

陈雷 乔百杰 敖春燕 符顺国 刘美茹 陈雪峰

陈雷,乔百杰,敖春燕,等.基于叶端定时的转子叶片动应变重构不确定性量化[J].航空动力学报,2022,37(7):1456‑1468. doi: 10.13224/j.cnki.jasp.20210275
引用本文: 陈雷,乔百杰,敖春燕,等.基于叶端定时的转子叶片动应变重构不确定性量化[J].航空动力学报,2022,37(7):1456‑1468. doi: 10.13224/j.cnki.jasp.20210275
CHEN Lei,QIAO Baijie,AO Chunyan,et al.Uncertainty quantification of rotor blade dynamic strain reconstruction based on blade tip timing[J].Journal of Aerospace Power,2022,37(7):1456‑1468. doi: 10.13224/j.cnki.jasp.20210275
Citation: CHEN Lei,QIAO Baijie,AO Chunyan,et al.Uncertainty quantification of rotor blade dynamic strain reconstruction based on blade tip timing[J].Journal of Aerospace Power,2022,37(7):1456‑1468. doi: 10.13224/j.cnki.jasp.20210275

基于叶端定时的转子叶片动应变重构不确定性量化

doi: 10.13224/j.cnki.jasp.20210275
基金项目: 

国家自然科学基金 51705397

国家科技重大专项(2017⁃Ⅴ⁃0009) 

详细信息
    作者简介:

    陈雷(1995-),男,硕士生,主要从事航空发动机旋转叶片动应力重构及重构不确定性研究。

    通讯作者:

    乔百杰(1985-),男,副教授、硕士生导师,博士,主要从事航空发动机叶片动应力重构技术研究。E⁃mail:qiao1224@xjtu.edu.cn

  • 中图分类号: V231.92

Uncertainty quantification of rotor blade dynamic strain reconstruction based on blade tip timing

  • 摘要:

    基于叶片非接触式动应变重构理论,开展动应变重构不确定性量化方法研究。基于方差合成定理建立重构叶片动应变不确定性量化分析模型;以模拟转子叶片为研究对象,开展旋转叶片叶端定时试验,利用周向傅里叶算法获取不同叶端定时传感器布局下的测点振幅,通过最大熵方法拟合振幅分布概率密度函数,确定叶端定时测振的不确定性参数;结合Kriging代理模型和试验共振频率数据对叶片有限元模型进行修正,获取关键测点位移⁃应变转换因子,并获取考虑共振转速以及测点位置不确定性的转换因子不确定性参数;获取重构动应变的均值、标准不确定度和包含区间,与应变片测量数据作对比。结果表明,除5号叶片A测点外,测量动应变均位于重构动应变的95%置信度下的包含区间内,且所有叶片的应变片测点动应变重构误差不超过15%。

     

  • 图 1  叶片动应变重构不确定性分析流程

    Figure 1.  Uncertainty analysis process of blade dynamic strain reconstruction

    图 2  叶片非接触式测量系统

    Figure 2.  Blade non⁃contact measurement system

    图 3  叶片高速旋转试验台

    Figure 3.  High⁃speed rotation test rig of blades

    图 4  应变片粘贴位置

    Figure 4.  Sticking positions of strain gauges

    图 5  叶片模型

    Figure 5.  Model of the blade

    图 6  叶片1阶模态振型

    Figure 6.  The first mode vibration shape of the blade

    图 7  叶片Campbell图

    Figure 7.  Campbell diagram of the blade

    图 8  叶端定时传感器角度布局

    Figure 8.  Angle placement of blade tip timing sensors

    图 10  4号叶片M1EO4下振幅分布拟合结果

    Figure 10.  Fitting result of vibration amplitude distribution of NO.4 blade at M1EO4

    图 11  模态振型提取

    Figure 11.  Mode shape extraction

    图 12  转速分布抽样

    Figure 12.  Rotation speed distribution sampling

    图 13  升速试验应变及转速信号

    Figure 13.  Strain and rotation speed signals in rotor run⁃up test

    图 14  M1EO4下4号叶片A点动应变时频图

    Figure 14.  Time⁃frequency diagram of dynamic strain of point A on NO.4 blade under M1EO4

    表  1  应变片在叶片上的位置

    Table  1.   Positions of the strain gauges on blades

    叶片编号应变片位置
    1A、B
    2A、C
    3A、B
    4A、C
    5A、B
    下载: 导出CSV

    表  2  叶片材料参数

    Table  2.   Material properties of the blade

    参数数值及详情
    材料GH4169
    密度/(g/cm3)8.24
    弹性模量/GPa195
    泊松比0.3
    下载: 导出CSV

    表  3  叶片静态固有频率

    Table  3.   Static natural frequency of the blade

    阶次固有频率/Hz
    1阶600.9
    2阶1 794.8
    3阶3 585.4
    下载: 导出CSV

    表  4  叶片振幅不确定性参数

    Table  4.   Uncertainty parameters of blade vibration amplitude

    叶片编号M1EO4M1EO3
    均值/μm标准差均值/μm标准差
    1182.911.63302.892.83
    2142.801.17456.113.76
    396.892.63299.792.34
    4125.592.40245.162.97
    5217.081.74498.131.95
    下载: 导出CSV

    表  5  转子叶片共振转速及频率

    Table  5.   Rotor blade resonant rotational speed and frequency

    工况参数叶片编号(试验)仿真
    12345
    M1EO4转速/(r/min9 4049 4039 6049 2529 4039 403
    频率/Hz627627640617627626
    M1EO3转速/(r/min13 00112 91613 25712 73413 00113 001
    频率/Hz650646663637650648
    下载: 导出CSV

    表  6  固有频率方均根误差

    Table  6.   RMSE of natural frequency

    叶片编号方均根误差
    M1EO4M1EO3
    30.540.55
    40.440.45
    下载: 导出CSV

    表  7  固有频率修正结果

    Table  7.   Correction result of natural frequency

    叶片编号叶长/mm固有频率/Hz相对误差/%
    M1EO4M1EO3M1EO4M1EO3
    347.46640.51663.260.080.04
    448.37616.54637.860.070.14
    下载: 导出CSV

    表  8  M1EO6处叶片固有频率对比

    Table  8.   Comparison of natural frequency under M1EO6

    叶片编号转速/(r/min固有频率/Hz相对误差/%
    试验仿真
    36 254625625.480.08
    46 003600602.940.49
    下载: 导出CSV

    表  9  M1EO4下位移⁃应变转换因子不确定性参数

    Table  9.   Uncertainty parameters of displacement⁃strain conversion factor under M1EO4

    叶片编号均值/m-1标准差
    ABCABC
    1,2,51.6861.3871.3440.096 00.108 30.107 8
    31.7201.3451.5020.100 70.081 80.088 1
    41.6631.3121.4480.089 80.078 00.099 0
    下载: 导出CSV

    表  10  M1EO3下位移⁃应变转换因子不确定性参数

    Table  10.   Uncertainty parameters of displacement⁃strain conversion factor under M1EO3

    叶片编号均值/m⁃1标准差
    ABCABC
    1,2,51.7041.3911.3440.100 70.112 40.109 0
    31.7381.3461.5040.105 40.084 80.088 2
    41.6811.3131.4500.094 40.081 10.100 1
    下载: 导出CSV

    表  11  M1EO4下应变幅值及共振频率

    Table  11.   Strain amplitude and vibration frequency under M1EO4

    叶片编号位置点频率/Hz应变/10-6
    1A625308.60
    B625263.50
    2A625263.29
    C625213.84
    4A616220.43
    C616166.67
    5A625418.70
    B625260.31
    下载: 导出CSV

    表  12  M1EO3下应变幅值及共振频率

    Table  12.   Strain amplitude and vibration frequency under M1EO3

    叶片编号位置点频率/Hz应变/10-6
    1A650518.91
    B650438.18
    2A647758.46
    C647609.14
    4A638410.08
    C638327.93
    5A6501034.56
    B650652.26
    下载: 导出CSV

    表  13  M1EO4下处重构动应变不确定性参数

    Table  13.   Uncertainty parameter of reconstructed dynamic strain under M1EO4

    叶片编号位置点应变均值/10-6应变标准差
    1A308.3917.77
    B253.8919.94
    2A240.7613.85
    C192.0615.47
    3A166.7410.75
    B130.318.68
    4A208.7311.96
    C181.8512.91
    5A366.0021.05
    B301.3123.63
    下载: 导出CSV

    表  14  M1EO3下重构动应变不确定性参数

    Table  14.   Uncertainty parameter of reconstructed dynamic strain under M1EO3

    叶片编号位置点应变均值/10-6应变标准差
    1A516.1230.88
    B421.3234.27
    2A777.2146.38
    C613.0149.97
    3A521.0431.86
    B403.5225.62
    4A412.1123.68
    C355.4824.92
    5A848.8150.27
    B692.9056.06
    下载: 导出CSV

    表  15  叶片动应变重构误差

    Table  15.   Dynamic strain reconstruction error of blades

    叶片编号位置点相对误差/%
    M1EO4M1EO3
    1A0.070.54
    B3.653.85
    2A8.562.47
    C10.190.64
    4A5.310.50
    C9.118.40
    5A12.5917.95
    B15.756.23
    下载: 导出CSV
  • [1] 王寿菊.国内外航空发动机企业信息化发展概述[J].内燃机与配件,2020,41(13):192⁃193.

    WANG Shouju.Overview of the development of informatization of domestic and foreign aero⁃engine enterprises[J].Internal Combustion Engine and Parts,2020,41(13):192⁃193.(in Chinese)
    [2] 徐海龙.旋转叶片裂纹的叶端定时非接触在线检测关键技术研究[D].长沙:国防科技大学,2018.

    XU Hailong.Research on key technology of crack detection in rotating blades by non‑contact online blade tip‑timing method[D].Changsha:National University of Defense Technology,2018.(in Chinese)
    [3] KNAPPETT D,GARCIA J.Blade tip timing and strain gauge correlation on compressor blades[J].Proceedings of the Institution of Mechanical Engineers:Part G Journal of Aerospace Engineering,2008,222(4):497⁃506.
    [4] ZHANG Xiaojie,WANG Yanrong,JIANG Xianghua,et al.Blade vibration stress determination method based on blade tip timing simulator and finite element method[J].Journal of Engineering for Gas Turbines and Power,2020,142(3):1‑16.
    [5] 段发阶,李刚,叶德超,等.基于叶尖定时的叶片动应力反演方法[J].纳米技术与精密工程,2016,14(3):161⁃166.

    DUAN Fajie,LI Gang,YE Dechao,et al.Method for inversing dynamic stress of blade based on tip⁃timing[J].Nano⁃technology and Precision Engineering,2016,14(3):161⁃166.(in Chinese)
    [6] 王维民,任三群,陈立芳,等.涡轮机叶片同步振动参数辨识方法研究(实验研究)[J].振动与冲击,2017,36(17):127‑133.

    WANG Weiming,REN Sanqun,CHEN Lifang,et al.Tests for synchronous vibration parametric identification method of a turbine's blades[J].Journal of Vibration and Shock,2017,36(17):127⁃133.(in Chinese)
    [7] 刘美茹,滕光蓉,肖潇,等.基于叶尖定时的航空发动机涡轮叶片振动测量[J].航空动力学报,2020,35(9):1954⁃1963.

    LIU Meiru,TENG Guangrong,XIAO Xiao,et al.Vibration measurement of turbine rotor blades of aero⁃engine based on blade tip⁃timing[J].Journal of Aerospace Power,2020,35(9):1954⁃1963.(in Chinese)
    [8] 刘美茹,朱靖,梁恩波,等.基于叶尖定时的航空发动机压气机叶片振动测量[J].航空动力学报,2019,34(9):1895⁃1904.

    LIU Meiru,ZHU Jing,LIANG Enbo,et al.Vibration measurement on compressor rotor blades of aero⁃engine based on tip⁃timing[J].Journal of Aerospace Power,2019,34(9):1895⁃1904.(in Chinese)
    [9] 徐海龙,杨拥民,胡海峰,等.基于压缩感知的叶端定时欠采样多频叶片振动盲重构研究[J].机械工程学报,2019,55(13):113⁃121.

    XU Hailong,YANG Yongmin,HU Haifeng,et al.Compressed sensing⁃based blind reconstruction of multi⁃frequency blade vibration from under⁃sampled BTT signals[J].Journal of Mechanical Engineering,2019,55(13):113⁃121.(in Chinese)
    [10] 敖春燕,乔百杰,刘美茹,等.基于非接触式测量的旋转叶片动应变重构方法[J].航空动力学报,2020,35(3):569⁃580.

    AO Chunyan,QIAO Baijie,LIU Meiru.Dynamic strain reconstruction method of rotating blades based on no⁃contact measurement[J].Journal of Aerospace Power,2020,35(3):569⁃580.(in Chinese)
    [11] SATISH TN,MURTHY R,SINGH AK.Analysis of uncertainties in measurement of rotor blade tip clearance in gas turbine engine under dynamic condition[J].Proceedings of the Institution of Mechanical Engineers:Part G Journal of Aerospace Engineering,2014,228(5):652⁃670.
    [12] PICKERING T M.Methods for validation of a turbomachinery rotor blade tip timing system[D].Blacksburg,Virginia,the United States of America:Virginia Tech,2014.
    [13] KAMARAJ A.Stress prediction in turbine blades under force excitation[D].San Diego,California,the United States of America:San Diego State University.2016.
    [14] 潘明昊.基于叶端定时测量的叶片多频振动稀疏重构方法[D].长沙:国防科技大学,2017.

    PAN Minghao.Sparse reconstruction of multi⁃frequency blade vibration spectrum by blade tip timing measurement[D].Changsha:National University of Defense Technology,2017.(in Chinese)
    [15] 许敬晖,乔百杰,滕光蓉,等.基于压缩感知的叶端定时信号参数辨识方法[J].航空学报,2021,42(5):524229⁃524239

    XU Jinghui,QIAO Baijie,TENG Guangrong,et al.Parameter identification of blade tip timing signal using compressed sensing[J].Acta Aeronauticaet Astronautica Sinica,2021,42(5):524229⁃524239.(in Chinese)
    [16] 吉利.基于响应面法的航天器有限元模型修正方法研究[D].哈尔滨:哈尔滨工业大学,2020.

    JI Li.Study of finite element model updating meth⁃od for spacecraft based on response surface method[D].Harbin:Harbin Institute of Technology,2020.(in Chinese)
    [17] 唐新姿,王喆,王效禹.多源不确定耦合下离心压气机叶轮气动稳健性[J].航空动力学报,2020,35(1):196⁃204.

    TANG Xinzi,WANG Zhe,WANG Xiaoyu.Aerodynamic robustness of centrifugal compressor impeller under multi⁃source uncertainty coupling[J].Journal of Aerospace Power,2020,35(1):196⁃204.(in Chinese)
    [18] DENG Zhongmin,GUO Zhaopu,ZHANG Xinjie.Interval model updating using perturbation method and radial basis function neural networks[J].Mechanical Systems and Signal Processing,2017,84:699⁃716.
    [19] HAMED H K,JOHN E M,KENNETH J B.Interval model updating with irreducible uncertainty using the Kriging predictor[J].Mechanical Systems and Signal Processing,2011,25(4):1204⁃1226.
    [20] MOHAMED M,PHILIP B,PETER R.A novel method for the determination of the change in blade tip timing probe sensing position due to steady movements[J].Mechanical Systems and Signal Processing,2019,126:686‑710.
    [21] 史进渊,杨宇,孙庆,等.机械零件振动的可靠性设计[J].振动工程学报,1999,4(4):117⁃122.

    SHI Jinyuan,YANG Yu,SUN Qing,et al.Reliability Design of Vibrating Machinery Part[J].Journal of Vibration Engineering,1999,4(4):117⁃122.(in Chinese)
  • 加载中
图(19) / 表(15)
计量
  • 文章访问数:  71
  • HTML浏览量:  11
  • PDF量:  30
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-02

目录

    /

    返回文章
    返回