留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

涡轴发动机整机吞砂试验及性能退化评估

刘伟 张赟

刘伟, 张赟. 涡轴发动机整机吞砂试验及性能退化评估[J]. 航空动力学报, 2023, 38(1):127-133 doi: 10.13224/j.cnki.jasp.20210283
引用本文: 刘伟, 张赟. 涡轴发动机整机吞砂试验及性能退化评估[J]. 航空动力学报, 2023, 38(1):127-133 doi: 10.13224/j.cnki.jasp.20210283
LIU Wei, ZHANG Yun. Sand ingestion test and performance degradation evaluation of turboshaft engine[J]. Journal of Aerospace Power, 2023, 38(1):127-133 doi: 10.13224/j.cnki.jasp.20210283
Citation: LIU Wei, ZHANG Yun. Sand ingestion test and performance degradation evaluation of turboshaft engine[J]. Journal of Aerospace Power, 2023, 38(1):127-133 doi: 10.13224/j.cnki.jasp.20210283

涡轴发动机整机吞砂试验及性能退化评估

doi: 10.13224/j.cnki.jasp.20210283
基金项目: 山东省自然科学基金(ZR2020ME125)
详细信息
    作者简介:

    刘伟(1987-),男,高级工程师,硕士,主要从事航空发动机总体设计及试验研究

    通讯作者:

    张赟(1983-),男,教授,博士,主要从事航空发动机故障诊断及试验研究。E-mail:hjhy_zy@126.com

  • 中图分类号: V235.1

Sand ingestion test and performance degradation evaluation of turboshaft engine

  • 摘要:

    为系统掌握砂尘侵蚀对涡轴发动机整机和零部件的影响,分析了国内外整机吞砂试验条款的差异及适用性,开展了某涡轴发动机整机吞砂试验研究。依据气动热力过程约束方程和发动机整机匹配约束条件,建立了涡轴发动机试验数据快速评估模型,完成了整机及各部件性能退化评估,并利用公开文献数据进行了对比分析。结果表明:功率和耗油率随吞砂时间呈二次函数规律退化,吞砂10 h功率损失10.2%,耗油率升高3.2%;吞砂造成压气机一级叶片弦长变短0.7%~3.4%、厚度减薄1.0%~3.0%,压气机流量下降4.1%、效率下降3.1%、增压比下降4.5%;燃气涡轮冷却气膜孔存在轻微堵塞和表面烧蚀,冷气量减少1.5%,效率下降0.5%;而动力涡轮效率因叶片表面光洁度提高有小幅提升。

     

  • 图 1  吞砂试验装置原理图[19]

    Figure 1.  Schematic of sand ingestion test device[19]

    图 2  分配器结构示意图[19]

    Figure 2.  Schematic structure of distributor[19]

    图 3  吞砂试验程序

    Figure 3.  Test procedure of sand ingestion

    图 4  试验发动机结构原理图

    A 进气道(含粒子分离器);B 压气机;C 燃烧室;D 燃气涡轮;E 动力涡轮;F 尾喷管。

    Figure 4.  Schematic diagram of the test engine

    图 5  轴功率衰减规律

    Figure 5.  Degradation trend of shaft power

    图 6  耗油率衰减规律

    Figure 6.  Degradation trend of specific fuel consumption

    图 7  压气机一级转子叶片磨蚀[21]

    Figure 7.  Compressor first rotor blade abrasion[21]

    图 8  燃气涡轮一级导向器熔砂黏附[21]

    Figure 8.  Molten sand adhered to first gas turbine guide blade[21]

    表  1  吞砂试验要求

    Table  1.   Test requirements of sand ingestion

    参数数值
    固定翼机旋翼机
    质量浓度/(mg/m35353
    吞粗砂时间/h0.550
    吞细砂时间/h1.554
    功率损失/%510
    耗油率增加/%510
    下载: 导出CSV

    表  2  砂尘颗粒尺寸和质量百分比

    Table  2.   Sand particle diameter and proportion distribution

    颗粒尺寸/μm质量百分比/%
    0~755
    75~12515
    125~20028
    200~40036
    400~60011
    600~9003.5
    900~10001.5
    下载: 导出CSV

    表  3  试验数据迭代模型

    Table  3.   Iteration model for test data analysis

    控制变量自变量残差方程
    m2t45σimcΔm2,Δt45
    下载: 导出CSV

    表  4  部件性能退化评估结果

    Table  4.   Component performance degradation evaluation results

    时间/hΔσi/%Δma2/%Δπc/%Δηc/%Δηb/%Δσb/%Δηgt/%Δηpt/%Δmb/%
    0000000000
    2−0.3−2.8−2.5−1.3−0.50.7−0.50.1−0.2
    4−0.5−3.2−3.2−1.8−0.81.2−0.40.2−0.5
    6−0.9−3.5−3.1−2.1−1.11.3−0.50.3−1.1
    8−1.2−3.9−3.5−2.5−1.31.5−0.50.3−1.3
    10−1.3−4.1−3.6−3.1−1.51.7−0.40.1−1.5
    下载: 导出CSV
  • [1] HERMAN R, OWCZARZAK J, MUSALLAM Y. Early performance assessment of bradley and abrams[R]. NSIAD-92-94, 1992.
    [2] COLUCCI F. Advanced coatings protect helicopter engines from compressor erosion to save lives and money[R]. Hirschberg: The American Helicopter Society, 2004.
    [3] RAPP G C, ROSENTHAL S H. Problems and solutions for sand environment operation of helicopter gas turbines[J]. ASME Paper 68-GT-37, 1968.
    [4] BOJDO N, FILIPPONE A. Fabric filter performance for helicopter inlet barrier filters[D]. Manchester, UK: The University of Manchester, 2012.
    [5] BOJDO N, FILIPPONE A. Comparative study of helicopter engine particle separators[D]. Manchester, UK: University of Manchester, 2014.
    [6] FILIPPONE A,BOJDO N. Turboshaft engine air particle separation[J]. Progress in Aerospace Sciences,2010,46: 224-245. doi: 10.1016/j.paerosci.2010.02.001
    [7] BOJDO N, FILIPPONE A. Operational performance parameters of engine inlet barrier filtration systems for rotorcraft[R]. Manchester, UK: The University of Manchester, 2011.
    [8] RHEE D H,LIM B J,AHN I K. Effect of sand and dust ingestion on small gas turbine engines[J]. The Korean Society of Mechanical Engineers,2012,38(8): 791-796.
    [9] MURUGAN D M, GHOSHAL D A, WALOCK D M, et al. Microstructure based material sand particulate interactions and assessment of coatings for high temperature turbine blades[J]. ASME Paper 2017-GT-64051, 2017.
    [10] DUNN M G,PADOVA C,MOLLER G E. Performance deterioration of a turbofan and a turbojet engine upon exposure to a dust environment[J]. Gas Turbines Power,1987,109(3): 336-343. doi: 10.1115/1.3240045
    [11] WALSH W S. Effects of sand ingestion on the film-cooling of turbine blades[D]. Blacksburg, US: Master of Science in Mechanical Engineering, 2005.
    [12] WALSH W S, THOLE K A, JOE C. Effects of sand ingestion on the blockage of film-cooling holes[J]. ASME Paper GT2006-90067, 2006.
    [13] GHENAIET A, TAN S C, ELDER R L. Numerical simulation of the axial fan performance degradation due to sand ingestion[R]. ASME Paper GT-2002-30644, 2002.
    [14] GHENAIET A, ELDER R L, TAN S C. Particles trajectories through an axial fan and performance degradation due to sand ingestion[R]. ASME Paper 2001-GT-0497, 2001.
    [15] 张鑫, 陈国智, 黄开明, 等. 两种吞砂试验条件下的涡轴发动机性能分析[C]//第十五届推进系统气动热力学专业学术交流会论文集. 杭州: 中国航空学会, 2015: 32-36.
    [16] 马昌,魏海涛. 一种航空发动机吞砂试验方法[J]. 科学技术与工程,2015,15(18): 239-240. doi: 10.3969/j.issn.1671-1815.2015.18.042

    MA Chang,WEI Haitao. An aero-engine sand swallow test method[J]. Science Technology and Engineering,2015,15(18): 239-240. (in Chinese) doi: 10.3969/j.issn.1671-1815.2015.18.042
    [17] 何光宇,李应红,柴艳,等. 航空发动机压气机叶片砂尘冲蚀防护涂层关键问题综述[J]. 航空学报,2015,36(6): 1733-1743.

    HE Guangyu,LI Yinghong,CHAI Yan,et al. Review of key issues on coating against sand erosion of aero-engine compressor blade[J]. Acta Aeronautica et Astronautica Sinica,2015,36(6): 1733-1743. (in Chinese)
    [18] 中国人民解放军总装备部. 航空涡轮螺桨和涡轮轴发动机通用规范: GJB242A-2018[S]. 北京: 中国标准出版社, 2018: 90.
    [19] 杨飞,田震,张浙波. 大功率涡桨发动机整机吞砂试验装置设计与研究[J]. 科学技术与工程,2020,20(21): 8573-8578. doi: 10.3969/j.issn.1671-1815.2020.21.022

    YANG Fei,TIAN Zhen,ZHANG Zhebo. Design and research of sand ingestion test device for high-power turboprop whole engine[J]. Science Technology and Engineering,2020,20(21): 8573-8578. (in Chinese) doi: 10.3969/j.issn.1671-1815.2020.21.022
    [20] 贾琳渊,程荣辉,张志舒,等. 研发阶段涡扇发动机模型自适应方法[J]. 推进技术,2020,41(9): 1935-1945. doi: 10.13675/j.cnki.tjjs.200204

    JIA Linyuan,CHENG Ronghui,ZHANG Zhishu,et al. Adaptive modelling for turbofan engine in development stage[J]. Journal of Propulsion Technology,2020,41(9): 1935-1945. (in Chinese) doi: 10.13675/j.cnki.tjjs.200204
    [21] 段辉, 杨芳, 宋敏娜, 等. 某型涡轴发动机吞砂试验性能衰减分析[R]. 沈阳: 第四届中国航空科学技术大会, 2019: 235-238.
  • 加载中
图(8) / 表(4)
计量
  • 文章访问数:  349
  • HTML浏览量:  62
  • PDF量:  90
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-06
  • 网络出版日期:  2022-12-05

目录

    /

    返回文章
    返回