留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

采用多层次优化方法的超紧凑GTF增压级气动设计

黄松 赵胜丰 阳诚武 李子良 卢新根

黄松, 赵胜丰, 阳诚武, 等. 采用多层次优化方法的超紧凑GTF增压级气动设计[J]. 航空动力学报, 2023, 38(5):1226-1238 doi: 10.13224/j.cnki.jasp.20210286
引用本文: 黄松, 赵胜丰, 阳诚武, 等. 采用多层次优化方法的超紧凑GTF增压级气动设计[J]. 航空动力学报, 2023, 38(5):1226-1238 doi: 10.13224/j.cnki.jasp.20210286
HUANG Song, ZHAO Shengfeng, YANG Chengwu, et al. Aggressive GTF booster aerodynamic design with multi-level optimization method[J]. Journal of Aerospace Power, 2023, 38(5):1226-1238 doi: 10.13224/j.cnki.jasp.20210286
Citation: HUANG Song, ZHAO Shengfeng, YANG Chengwu, et al. Aggressive GTF booster aerodynamic design with multi-level optimization method[J]. Journal of Aerospace Power, 2023, 38(5):1226-1238 doi: 10.13224/j.cnki.jasp.20210286

采用多层次优化方法的超紧凑GTF增压级气动设计

doi: 10.13224/j.cnki.jasp.20210286
基金项目: 国家自然科学基金(52106065); 国家两机科技重大专项 (2019-Ⅱ-0004-0024)
详细信息
    作者简介:

    黄松(1995-),男,博士生,主要从事叶轮机械气动热力学及计算流体力学研究

    通讯作者:

    赵胜丰(1982-),男,研究员,博士,主要从事叶轮机械气动热力学研究。E-mail:zhaoshengfeng@iet.cn

  • 中图分类号: V231.1

Aggressive GTF booster aerodynamic design with multi-level optimization method

  • 摘要:

    为克服超紧凑齿轮传动涡扇(GTF)发动机增压级优化设计面临的高维、耗时、黑箱三大难题,发展了一套精准高效可靠的优化设计方法,运用多目标粒子群算法结合下降单纯形算法的多层次优化策略,具有优化变量少、求解速度快、寻优能力强的优势。优化设计后,GTF增压级在100%设计转速下的峰值效率和失速裕度分别提升0.27%和1.31%。相比于复合弯掠高负荷静子原型,高负荷静子优化构型通过改变整个展向的叶型特征和三维积叠规律,使得自20%叶展至叶尖的流动分离向下游移动,减少由叶尖向轮毂的径向迁移和吸力面尾缘附近低速回流区域的范围,延缓了GTF增压级失速的发生,提升了GTF增压级的效率。

     

  • 图 1  GTF增压级的子午示意图

    Figure 1.  Meridian schematic diagram of the GTF booster

    图 2  某型2.5级高负荷压气机示意图

    Figure 2.  Schematic diagram of the 2.5-stage highly loaded compressor

    图 3  三维数值计算特性线

    Figure 3.  Three-dimensional numerical calculation characteristic line

    图 4  4种不同增压级静子积叠方案

    Figure 4.  Four different booster stator stacking schemes

    图 5  4种不同积叠方案下GTF增压级的气动性能

    Figure 5.  Aerodynamic performance of GTF booster under four different stacking schemes

    图 6  4种不同积叠方案下高负荷静子的极限流线

    Figure 6.  Limiting streamline of the highly loaded stator under four different stacking schemes

    图 7  4种不同积叠方案下高负荷静子95%叶展的绝对马赫数

    Figure 7.  Absolute Mach number of 95% span of the highly loaded stator under four different stacking schemes

    图 8  DFFD方法的流程

    Figure 8.  Process description of DFFD method

    图 9  高负荷静子的DFFD控制体

    Figure 9.  DFFD control body of the highly loaded stator

    图 10  高负荷静子优化流程

    Figure 10.  Optimization process of the highly loaded stator

    图 11  高负荷静子优化前后增压级气动性能对比

    Figure 11.  Comparison of aerodynamic performance of booster before and after the optimization of highly loaded stator

    图 12  高负荷静子优化前后的几何特征对比

    Figure 12.  Comparison of geometric characteristics before and after optimization of highly loaded stator

    图 13  高负荷静子优化前后展向的总压损失对比

    Figure 13.  Comparison of total pressure loss in span-wise direction before and after optimization of highly loaded stator

    图 14  高负荷静子优化前后轴向的熵増对比

    Figure 14.  Comparison of entropy rise of axial direction before and after optimization of the highly loaded stator

    图 15  高负荷静子优化前后35%叶展的绝对马赫数

    Figure 15.  Absolute Mach number in 35% of span height before and after optimization of the highly loaded stator

    图 16  高负荷静子优化前后35%叶展的等熵马赫数

    Figure 16.  Isentropic Mach number in 35% of span height before and after optimization of the highly loaded stator

    图 17  高负荷静子优化前后95%叶展的绝对马赫数

    Figure 17.  Absolute Mach number in 95% of span height before and after optimization of the highly loaded stator

    图 18  高负荷静子优化前后的极限流线

    Figure 18.  Limiting streamlines before and after optimization of the highly loaded stator

    表  1  GTF增压级关键几何和气动参数

    Table  1.   Key geometric and aerodynamic parameters of the GTF booster

    参数数值
    设计转速/(r/min)8614.2
    设计流量/(kg/s)53.7
    设计总压比2.5
    设计效率0.88
    叶片数目51, 45, 67, 55, 96, 8
    进口机匣半径/mm482
    进口轮毂比0.76
    转子叶尖间隙/mm0.4
    转子叶尖速度/(m/s)423.4
    下载: 导出CSV

    表  2  增压级各叶片排的展弦比和稠度

    Table  2.   Aspect ratio and solidity of each blade row of booster

    参数数值
    进口导叶平均展弦比2.19
    第一级转子平均展弦比1.09
    第一级静子平均展弦比1.49
    第二级转子平均展弦比1.00
    第二级静子平均展弦比1.36
    出口支板平均展弦比1.14
    进口导叶平均稠度1.00
    第一级转子平均稠度1.54
    第一级静子平均稠度1.47
    第二级转子平均稠度1.61
    第二级静子平均稠度1.89
    出口支板平均稠度0.36
    下载: 导出CSV
  • [1] Rolls Royce. The jet engine[M]. Derby, England: John Wiley & Sons, 2015.
    [2] 陈懋章,刘宝杰. 大涵道比涡扇发动机风扇/压气机气动设计技术分析[J]. 航空学报,2008,29(3): 513-526. doi: 10.3321/j.issn:1000-6893.2008.03.001

    CHEN Maozhang,LIU Baojie. Fan/compressor aero design technology for high bypass ratio turbofan[J]. Acta Aeronautica et Astronautica Sinica,2008,29(3): 513-526. (in Chinese) doi: 10.3321/j.issn:1000-6893.2008.03.001
    [3] DELL’ERA G,HABOTTE N,DESSET J,et al. Experimental characterization of stall phenomena in a single-stage low-pressure axial compressor[J]. Proceedings of the Institution of Mechanical Engineers,2015,229(5): 549-559. doi: 10.1177/0957650915590712
    [4] HATCH J E, GIAMATI C C, JACKSON R J. Application of radial-equilibrium condition to axial-flow turbomachine design including consideration of change of entropy with radius downstream of blade row[R]. NACA RM E54A20, 1954.
    [5] WENNERSTROM A J, HEARSEY R M. The design of an axial compressor stage for a total pressure ratio of 3 to 1[R]. ARL71-0061, 1971
    [6] REYNOLDS B, ETTER S, TORONY J, et al. Design of a small axial compressor for high efficiency over a wide operating range[R]. Orlando, US: American Society of Mechanical Engineers, 1991.
    [7] HU J F,ZHU X C,OUYANG H,et al. Performance prediction of transonic axial compressor based on streamline curvature method[J]. Journal of Mechanical Science & Technology,2011,25(12): 3037-3045.
    [8] ATTIA M S, LI W. A new vortex solution for axial compressor design: Part 1 design and methodology[R]. Indianapolis, US: American Institute of Aeronautics and Astronautics, 2019.
    [9] ATTIA M S, LI W. A new vortex solution for axial compressor design: Part 2 validation and CFD analysis[R]. Indianapolis, US: American Institute of Aeronautics and Astronautics, 2019.
    [10] SHAN S,WANG G G. Survey of modeling and optimization strategies to solve high-dimensional design problems with computationally-expensive black-box functions[J]. Structural & Multidisciplinary Optimization,2010,41(2): 219-241.
    [11] BUCHE D, GUIDATI G, STOLL P. Automated design optimization of compressor blades for stationary, large-scale turbomachinery[C]//ASME Turbo Expo, Atlanta Georgia: American Society of Mechanical Engineers, 2003: 1249-1257
    [12] HOBBS D E,WEINGOLD H D. Development of controlled diffusion airfoils for multistage compressor application[J]. Journal of Engineering for Gas Turbines and Power,1984,106(2): 271-278. doi: 10.1115/1.3239559
    [13] ADJEI R A,WANG W Z,LIU Y Z. Aerodynamic design optimization of an axial flow compressor stator using parameterized free-form deformation[J]. Journal of Engineering for Gas Turbines and Power,2019,141(10): 1-17.
    [14] KOLLOR U, MONIG R, KUSTERS B, et al. Development of advanced compressor airfoils for heavy-duty gas turbines: Part Ⅰ design and optimization[R] Indianapolis, US: American Society of Mechanical Engineers, 1999.
    [15] CASARTELLI E, MANGANI L. Object-oriented open-source CFD for turbomachinery applications: a review and recent advances[R]. San Antonio, US: American Society of Mechanical Engineers, 2013.
    [16] LALWANI S,SINGHAL S,KUMAR R,et al. A comprehensive survey: applications of multi-objective particle swarm optimization (mopso) algorithm[J]. Transactions on Combinatorics,2013,2(1): 39-101.
    [17] LEE Y T,LUO L,BEIN T W. Direct method for optimization of a centrifugal compressor vaneless diffuser[J]. Journal of Turbomachinery,2001,123(1): 73-79. doi: 10.1115/1.1308571
    [18] LI Z,ZHU Z,SONG Y,et al. A multi-objective particle swarm optimizer with distance ranking and its applications to air compressor design optimization[J]. Transactions of the Institute of Measurement and Control,2012,34(5): 546-556. doi: 10.1177/0142331211406603
    [19] GUMMER V,WENGER U,KAU H P. Using sweep and dihedral to control three-dimensional flow in transonic stators of axial compressors[J]. Journal of Turbomachinery,2001,123(1): 40-48. doi: 10.1115/1.1330268
    [20] BRILLIANT L, BALAMUCKI S, BURGER G, et al. Application of multistage CFD analysis to low pressure compressor design[R]. ASME Paper GT2004-54263, 2004.
    [21] LEPOT I, MENGISTU T, HIERNAUX S, et al. Highly loaded LPC blade and non axisymmetric hub profiling optimization for enhanced efficiency and stability[R]. ASME Paper GT2011-46261, 2011.
    [22] GORYACHKIN E, POPOV G, BATURIN O, et al. Three-stage low pressure compressor modernization by means of optimization methods[R]. ASME Paper GT2015-43384, 2015.
    [23] LEJON M, GRNSTEDT T, GLODIC N, et al. Multidisciplinary design of a three stage high speed booster[R]. ASME Paper GT2017-64466, 2017.
    [24] 向宏辉,夏联,顾杨,等. 三级增压级试验件性能试验研究[J]. 燃气轮机技术,2009,22(2): 22-25, 28. doi: 10.16120/j.cnki.issn1009-2889.2009.02.002

    XIANG Honghui,XIA Lian,GU Yang,et al. Experimental investigation of the performance in a three stage booster rig[J]. Gas Turbine Technology,2009,22(2): 22-25, 28. (in Chinese) doi: 10.16120/j.cnki.issn1009-2889.2009.02.002
    [25] 余华蔚,程荣辉,夏联. 民用飞机发动机增压级设计与试验研究[J]. 燃气涡轮试验与研究,2010,23(1): 1-8. doi: 10.3969/j.issn.1672-2620.2010.01.001

    YU Huawei,CHENG Ronghui,XIA Lian. Design and experimental investigation of low pressure compressor for civil aero-plane[J]. Gas Turbine Test and Research,2010,23(1): 1-8. (in Chinese) doi: 10.3969/j.issn.1672-2620.2010.01.001
    [26] 杨晓锋. 通流模型在组合压气机设计与分析中的应用[D]. 南京: 南京航空航天大学, 2016

    YANG Xiaofeng. Application of flow through model in combined compressor design and analysis[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2016. (in Chinese)
    [27] 邵伏永,杨金广,刘振德,等. 改进的流线曲率通流计算方法及在双涵道压缩系统设计中的应用[J]. 航空动力学报,2008,23(6): 1072-1076. doi: 10.13224/j.cnki.jasp.2008.06.018

    SHAO Fuyong,YANG Jinguang,LIU Zhende,et al. Improved streamline curvature throughflow method and its application in a bypass compression system design[J]. Journal of Aerospace Power,2008,23(6): 1072-1076. (in Chinese) doi: 10.13224/j.cnki.jasp.2008.06.018
    [28] ANDERSON M R, BONHAUS D L. A comprehensive through-flow solver method for modern turbomachinery design[R]. ASME Paper GT2015-43763, 2015.
    [29] GU F, ANDERSON M R. CFD-based throughflow solver in a turbomachinery design system[R]. ASME Paper GT2007-27389, 2007.
    [30] YANG C, HAN G, ZHAO S, et al. Design and test of a novel highly-loaded compressor[R]. ASME Paper GT2019-91181, 2019
    [31] HSU W M,HUGHES J F,KAUFMAN H. Direct manipulation of free-form deformations[J]. Computer Graphics,1992,26(2): 177-184. doi: 10.1145/142920.134036
    [32] HU S M,ZHANG H,TAI C L,et al. Direct manipulation of FFD: efficient explicit solutions and decomposible multiple point constraints[J]. The Visual Computer,2001,17(6): 370-379. doi: 10.1007/s003710100114
  • 加载中
图(18) / 表(2)
计量
  • 文章访问数:  156
  • HTML浏览量:  34
  • PDF量:  53
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-06
  • 网络出版日期:  2023-03-17

目录

    /

    返回文章
    返回