留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

加力燃烧室湍流火焰面模型优化方法

李安琦 刘勇 张祥

李安琦, 刘勇, 张祥. 加力燃烧室湍流火焰面模型优化方法[J]. 航空动力学报, 2023, 38(5):1083-1089 doi: 10.13224/j.cnki.jasp.20210303
引用本文: 李安琦, 刘勇, 张祥. 加力燃烧室湍流火焰面模型优化方法[J]. 航空动力学报, 2023, 38(5):1083-1089 doi: 10.13224/j.cnki.jasp.20210303
LI Anqi, LIU Yong, ZHANG Xiang. Optimization method of turbulent flamelet model in afterburner[J]. Journal of Aerospace Power, 2023, 38(5):1083-1089 doi: 10.13224/j.cnki.jasp.20210303
Citation: LI Anqi, LIU Yong, ZHANG Xiang. Optimization method of turbulent flamelet model in afterburner[J]. Journal of Aerospace Power, 2023, 38(5):1083-1089 doi: 10.13224/j.cnki.jasp.20210303

加力燃烧室湍流火焰面模型优化方法

doi: 10.13224/j.cnki.jasp.20210303
基金项目: 航空发动机及燃气轮机重大专项基础研究项目(2017-Ⅲ-0007-0033)
详细信息
    作者简介:

    李安琦(1999-),女,硕士生,主要从事燃烧室燃烧方向的研究

  • 中图分类号: V231.2

Optimization method of turbulent flamelet model in afterburner

  • 摘要:

    加力燃烧室中流速高、压力低、含氧量低,燃油喷射以直射式为主,常用燃烧模型多会高估其反应速率。火焰面类模型采用查表法处理标量场,计算速度较快,但较难调整反应速率。在稳态层流火焰面模型基础上,添加了非定常化学动力学的影响因素来调整反应速率;在试验数据基础上,建立火焰面反应时间尺度,优化火焰面数据库,改善了该类方法在高速、低压、贫氧和雾化差下的数值仿真精度。结果表明:该优化方法形成的火焰面数据库能够较好模拟加力燃烧室中燃油复杂化学反应过程;在本文计算结果验证中,能将温度分布模拟误差控制在15%以内,平均温度模拟误差控制在5%以内。

     

  • 图 1  不同反应时间下C2H4的质量分数分布

    Figure 1.  Distribution of mass fraction of C2H4 under different reaction time

    图 2  驻涡传焰槽稳定器试验模型结构图

    Figure 2.  Experimental model structure diagram of stationary vortex flame groove stabilizer

    图 3  驻涡传焰槽稳定器试验模型网格图

    Figure 3.  Grid diagram of experimental model of stationary vortex flame groove stabilizer

    图 4  温度/烟气采样耙布局示意图(单位:mm)

    Figure 4.  Schematic diagram of temperature/smoke sampling rake layout (unit:mm)

    图 5  驻涡传焰槽稳定器计算所得流场侧视、俯视图

    Figure 5.  Side view and top view of the flow field calculated by stationary vortex flame groove stabilizer

    图 6  不同τ取值数据库及稳态火焰面数据库计算所得俯视温度云图

    Figure 6.  Top view temperature nephogram calculated by different τ values databases and steady flame surface database

    图 7  不同截面温度沿X轴方向变化曲线

    Figure 7.  Temperature change curve of different sections along the X-axis direction

    图 8  不同数据库所得模拟结果与试验数据对比

    Figure 8.  Comparison of simulation results obtained from different databases with experimental data

    图 9  τ=0.163 ms数据库模拟结果与试验结果对比

    Figure 9.  Comparison of simulation results obtained from τ=0.163 ms database with experimental data

    图 10  不同工况下PM截面平均温度测量值与模拟值对比

    Figure 10.  Comparision of the measured average temperature and the simulation value of PM section under different working conditions

    表  1  试验工况表[18]

    Table  1.   Experimental conditions[18]

    工况空气进口
    速度/(m/s)
    空气进口
    温度/K
    试验段
    压力/MPa
    总油气比
    1109.267000.060.0378
    2103.967000.040.0370
    3149.577000.030.0372
    4135.046000.030.0375
    5161.608000.030.0365
    下载: 导出CSV

    表  2  工况1、工况2数值模拟值与试验测量值对比表[18]

    Table  2.   Comparison table of numerical simulation value and experimental measurement value in working conditions 1 and 2[18]

    工况高度/
    mm
    试验测量
    温度/K
    数值模拟
    温度/K
    温度偏差/
    K
    偏差
    百分比/%
    1181358.721483.35124.639.17
    431325.141386.9861.844.60
    681322.861177.28145.5811.0
    2181411.151570.09158.9411.26
    431431.101398.9332.172.25
    681334.891161.81173.0812.97
    下载: 导出CSV

    表  3  PM截面平均温度测量值与模拟值对比[18]

    Table  3.   PM cross section average temperature measured and simulated values are compared[18]

    工况PM截面平均
    测量温度/K
    PM截面平均
    模拟温度/K
    温度偏差/
    K
    偏差
    百分比/%
    11335.571349.2013.631.02
    21392.381376.9415.441.10
    31517.251463.7153.543.53
    41473.201511.1337.932.57
    51608.181681.5173.334.56
    下载: 导出CSV
  • [1] 夏姣辉,杨谦,王慧汝,等. 涡扇发动机加力燃烧技术发展分析[J]. 航空动力,2020(4): 17-21.

    XIA Jiaohui,YANG Qian,WANG Huiru,et al. Development analysis to afterburner combustion technology of turbofan[J]. Aerospace Power,2020(4): 17-21. (in Chinese)
    [2] 张峥. 燃烧室燃油喷雾场特性研究[D]. 南京: 南京航空航天大学, 2009.

    ZHANG Zheng. Experiment study on fuel spray characteristics in model combustor[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2009. (in Chinese)
    [3] 王成冬. 小型涡喷发动机加力燃烧室燃烧特性研究及整机验证[D]. 合肥: 中国科学院大学, 2018.

    WANG Chengdong. Research on combustion characteristics of afterburner of small turbo-jet engine and validation of overall engine test[D]. Hefei: University of Chinese Academy of Sciences, 2018. (in Chinese)
    [4] 陆斌. 加力燃烧室波瓣强迫混合器掺混及燃烧特性研究[D]. 南京: 南京航空航天大学, 2017.

    LU Bin. Investigation on mixing and combustion performances of lobe forced mixer for the afterburner[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2017. (in Chinese)
    [5] 刘雨辰. 加力用扇形喷嘴雾化特性试验研究[D]. 南京: 南京航空航天大学, 2019.

    LIU Yuchen. Experimental study on spray characteristics of atomizing fan nozzle for afterburner[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2019. (in Chinese)
    [6] RAVICHANDRAN M,SAMPATH S,GANESAN V. Numerical analysis of two-ring flame stabilizer flows in aircraft afterburners[J]. Numerical Heat Transfer: Part A Applications,1995,28(1): 85-101. doi: 10.1080/10407789508913734
    [7] 赵坚行,颜应文. 加力燃烧室热态流场的大涡模拟[J]. 工程热物理学报,2004,25(增刊): 237-239.

    ZHAO Jianxing,YAN Yingwen. Large-eddy simulation of turbulent reacting flows for the afterburner[J]. Journal of Engineering Thermophysics,2004,25(Suppl.): 237-239. (in Chinese)
    [8] 邵茂敏,颜应文,刘勇,等. 模型加力室大涡模拟的并行计算[J]. 航空动力学报,2006,21(3): 497-501. doi: 10.3969/j.issn.1000-8055.2006.03.011

    SHAO Maomin,YAN Yingwen,LIU Yong,et al. Parallel computing of flow field of a model afterburner[J]. Journal of Aerospace Power,2006,21(3): 497-501. (in Chinese) doi: 10.3969/j.issn.1000-8055.2006.03.011
    [9] 章诚,叶桃红,陈义良,等. 三维加力燃烧室两相湍流燃烧的数值模拟[J]. 航空动力学报,2000,15(4): 397-400. doi: 10.3969/j.issn.1000-8055.2000.04.013

    ZHANG Cheng,YE Taohong,CHEN Yiliang,et al. Numerical simulation of two-phase turbulent combustion in a 3-D afterburner[J]. Journal of Aerospace Power,2000,15(4): 397-400. (in Chinese) doi: 10.3969/j.issn.1000-8055.2000.04.013
    [10] 朱祚金,张孝春. 加力燃烧室单相燃烧模型及其应用[J]. 推进技术,1997,18(5): 36-40,45. doi: 10.3321/j.issn:1001-4055.1997.05.009

    ZHU Zuojin,ZHANG Xiaochun. Single phase combustion model and its application in a jet endine afterburner[J]. Journal of Propulsion Technology,1997,18(5): 36-40,45. (in Chinese) doi: 10.3321/j.issn:1001-4055.1997.05.009
    [11] PETERS N. Laminar flamelet concepts in turbulent combustion[J]. Symposium (International) on Combustion,1988,21(1): 1231-1250 . doi: 10.1016/S0082-0784(88)80355-2
    [12] MARBLE F E, BROADWELL J. The coherent flame model of non-premixed turbulent combustion[M]. Poston: Springer, 1977.
    [13] WILLIAMS F A. A review of some theoretical combustions of turbulent flame structure[C]//AGARD Conference Proceedings Ⅱ. Copenhagen: OPTICA, 1975: 1-25.
    [14] BERGLUND M,FUREBY C. LES of supersonic combustion in a scramjet engine model[J]. Proceedings of the Combustion Institute,2007,31(2): 2497-2504. doi: 10.1016/j.proci.2006.07.074
    [15] GAMBA M, MUNGAL M G, HANSON R K. Ignition and near-wall burning in transverse hydrogen jets in super sonic crossflow[R]. AIAA-2011-319, 2011.
    [16] PIERCE C D,MOIN P. Progress-variable approach for large-eddy simulation of non-premixed turbulent combustion[J]. Journal of Fluid Mechanics,2004,504: 73-97. doi: 10.1017/S0022112004008213
    [17] 金台. 超声速湍流燃烧多物理耦合的直接数值模拟[D]. 杭州: 浙江大学, 2015.

    JIN Tai. Direct numerical simulation of coupled multi-physics in supersonic turbulent combustion[D]. Hangzhou: Zhejiang University, 2015. (in Chinese)
    [18] HUANG Yakun, HE Xiaomin, ZHANG Huangwei, et al. Spark ignition and stability limits of spray kerosene flames under subatmospheric pressure conditions[J]. Aerospace Science and Technology, 2021, 114: 106734.1-106734.12.
  • 加载中
图(10) / 表(3)
计量
  • 文章访问数:  265
  • HTML浏览量:  31
  • PDF量:  394
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-16
  • 网络出版日期:  2023-04-03

目录

    /

    返回文章
    返回