留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于近似粗糙集分辨力分类算法的飞机类型预测

国强 赵佳琦

国强, 赵佳琦. 基于近似粗糙集分辨力分类算法的飞机类型预测[J]. 航空动力学报, 2023, 38(5):1250-1258 doi: 10.13224/j.cnki.jasp.20210304
引用本文: 国强, 赵佳琦. 基于近似粗糙集分辨力分类算法的飞机类型预测[J]. 航空动力学报, 2023, 38(5):1250-1258 doi: 10.13224/j.cnki.jasp.20210304
GUO Qiang, ZHAO Jiaqi. Aircraft type prediction based on approximate rough set resolution classification algorithm[J]. Journal of Aerospace Power, 2023, 38(5):1250-1258 doi: 10.13224/j.cnki.jasp.20210304
Citation: GUO Qiang, ZHAO Jiaqi. Aircraft type prediction based on approximate rough set resolution classification algorithm[J]. Journal of Aerospace Power, 2023, 38(5):1250-1258 doi: 10.13224/j.cnki.jasp.20210304

基于近似粗糙集分辨力分类算法的飞机类型预测

doi: 10.13224/j.cnki.jasp.20210304
基金项目: 航空科学基金(202000550P6001)
详细信息
    作者简介:

    国强(1972-),男,教授,博士,主要从事雷达通信抗干扰及电子对抗的研究。E-mail:guoqiang@hrbeu.edu.cn

    通讯作者:

    赵佳琦(1997-),女,硕士,主要从事粗糙集理论研究及飞机类型预测的研究。E-mail:zhaojq97@hrbeu.edu.cn

  • 中图分类号: V247;TP273

Aircraft type prediction based on approximate rough set resolution classification algorithm

  • 摘要:

    传统的C4.5分类决策树作为数据分类算法具有计算简单、准确率高的优势,由于飞机具有参数多和数据量大的因素,C4.5算法需要对连续属性值进行多次顺序扫描,分类时间效率较低。针对此问题,提出近似粗糙集和决策分辨力分类算法,利用粗糙集近似度来判断属性划分样本数据能力,并将其代入到决策分辨力算法中,以决策分辨力最大的属性作为分裂特征建立分类决策树。算法在保证分类决策准确率的同时,提高计算效率并减少过拟合问题的产生。通过对UCI(University of California, Irvine)数据集上多组数据样本的对比实验分析,验证了本文提出PSRP(rough set and resolving power)的算法在保证相同准确率的情况下,平均计算时间效率提升约10%,可靠性提升2%。

     

  • 图 1  近似粗糙集正确率,错误率和未识别率

    Figure 1.  Approximate rough set accuracy, error rate and unrecognized rate

    图 2  RSRP算法流程图

    Figure 2.  RSRP algorithm flow chart

    图 3  批发客户数据集的近似度取值

    Figure 3.  Approximation value of data set wholesale customer

    图 4  心力衰竭数据集的近似度取值

    Figure 4.  Approximation value of data set heart failure

    图 5  飞机类型预测近似度取值

    Figure 5.  Approximation value of aircraft type prediction

    表  1  数据集描述

    Table  1.   Data set description

    序号数据集名称样本个数条件属性决策类
    1heart failure299122
    2hcvdat615125
    3user model25854
    4liver patient583102
    5ionosphere351332
    6exasens39934
    7transfusion74842
    8wholesale customer44072
    9messidor1151192
    10spy plane finder597312
    下载: 导出CSV

    表  2  数据集分类评估指标对比

    Table  2.   Comparison of evaluation indexes for data set classification

    数据集名称F1时间效率树形复杂度
    C4.5RS-CARTRSRPC4.5RS-CARTRSRPC4.5RS-CARTRSRP
    heart failure0.79970.77150.81520.28290.18620.24216.784.423.98
    hcvdat0.90840.86160.89251.84301.04431.02437.904.824.00
    user model0.89540.82920.90650.20440.17670.19135.564.544.24
    liver patient0.66930.69420.70201.65170.86610.687544.096.446.39
    ionosphere0.88230.89200.89641.91001.05841.12924.523.643.46
    exasens0.51880.52140.54160.07890.06620.07348.026.126.54
    transfusion0.75910.77750.76950.25050.19050.173617.547.965.02
    wholesale customer0.88950.89960.90650.87430.63170.64178.625.204.40
    messidor0.59240.55510.641039.24187.75386.8217104.210.246.6
    平均值0.76830.75580.78575.14861.33041.220523.02565.93114.9589
    下载: 导出CSV

    表  3  飞机类型预测评估指标对比

    Table  3.   Comparison of aircraft type prediction evaluation indexes

    评价指标C4.5RS-CARTRSRP
    F10.87100.86550.8744
    时间效率6.06915.57384.7178
    树形复杂度7.644.584.94
    下载: 导出CSV
  • [1] COLUCCIA A,PARISI G,FASCISTA A. Detection and classification of multirotor drones in radar sensor networks: a review[J]. Sensors,2020,20(15): 1-22. doi: 10.1109/JSEN.2020.3003972
    [2] LEI P,WANG J,GUO P,et al. Automatic classification of radar targets with micro-motions using entropy segmentation and time-frequency features[J]. Electron Commun,2011,65(10): 806-813.
    [3] ZHOU G Q,ZHANG R T,ZHANG D J. Manifold learning co-location decision tree for remotely sensed imagery classification[J]. Remote Sens,2016,8(855): 1-31.
    [4] 同亚龙,王彤,代保全,等. 一种抗密集欺骗式干扰的机载雷达动目标检测方法[J]. 电子与信息学报,2015,37(3): 658-664. doi: 10.11999/JEIT140679

    TONG Yalong,WANG Tong,DAI Baoquan,et al. A moving target detection method to suppress dense deception jamming for airborne radar[J]. Journal of Electronics & Information Technology,2015,37(3): 658-664. (in Chinese) doi: 10.11999/JEIT140679
    [5] 王福友,罗钉,刘宏伟. 低分辨机载雷达飞机目标分类识别技术研究[J]. 雷达学报,2014,3(4): 444-449.

    WANG Fuyou,LUO Ding,LIU Hongwei. Low-resolution airborne radar aircraft target classification[J]. Journal of Radars,2014,3(4): 444-449. (in Chinese)
    [6] 雷涛,旷生玉,杨玲. 基于深度学习的雷达辐射源型号识别方法[J]. 电子信息对抗技术,2019,34(4): 29-34. doi: 10.3969/j.issn.1674-2230.2019.04.006

    LEI Tao,KUANG Shengyu,YANG Ling. Radar emitter type identification algorithm based on deep learning[J]. Electronic Information Warfare Technology,2019,34(4): 29-34. (in Chinese) doi: 10.3969/j.issn.1674-2230.2019.04.006
    [7] 欧阳瑞麒,雍杨,王兵学. 卷积神经网络在飞机类型识别中的应用[J]. 兵工自动化,2017,36(12): 71-75.

    OUYANG Ruilin,YONG Yang,WANG Bingxue. Application of convolution neural network in aircraft type recognition[J]. Ordnance Industry Automation,2017,36(12): 71-75. (in Chinese)
    [8] 刘相云,龚志辉,金飞,等. 结合显著图和深度学习的遥感影像飞机目标识别[J]. 测绘通报,2019(3): 27-31.

    LIU Xiangyun,GONG Zhihui,JIN Fei,et al. Aircraft target recognition in remote sensing image combined saliency map with deep learning[J]. Bulletin of Surveying and Mapping,2019(3): 27-31. (in Chinese)
    [9] ZHANG K,ZHAN J M,WU W Z. Novel fuzzy rough set models and corresponding applications to multi- criteria decision-making[J]. Fuzzy Sets and Systems,2020(383): 92-126.
    [10] YAO Y Y,SHE Y H. Rough set models in multigranulation spaces[J]. Information Sciences,2016(327): 40-56.
    [11] 王越,万洪. 一种新的应用变精度粗糙集的决策树构造方法[J]. 重庆理工大学学报(自然科学),2013,27(11): 58-64.

    WANG Yue,WAN Hong. A new method for constructing decision tree based on variable precision rough set[J]. Journal of Chongqing University of Technology (Natural Science),2013,27(11): 58-64. (in Chinese)
    [12] 刘军. 基于叶枝比率的决策树构建算法[J]. 信息网络安全,2013(2): 9-12.

    LIU Jun. Algorithm of constructing decision tree based on the leaf and branch ratio[J]. Netinfo Security,2013(2): 9-12. (in Chinese)
    [13] JIANG J F,ZHU X Y,HAN G J,et al. A dynamic trust evaluation and update mechanism based on C4.5 decision tree in underwater wireless sensor networks[J]. IEEE Transactions on Vehicular Technology,2020,69(8): 31-40.
    [14] 尚朝轩,王品,韩壮志,等. 基于类决策树分类的特征层融合识别算法[J]. 控制与决策,2016,31(6): 1009-1014.

    SHANG Chaoxuan,WANG Pin,HAN Zhuangzhi,et al. Feature-level fusion recognition algorithm based on analogy decision tree classification[J]. Control and Decision,2016,31(6): 1009-1014. (in Chinese)
    [15] XIAO F Y. Multi-sensor data fusion based on the belief divergence measure of evidences and the belief entropy[J]. Information Fusion,2019(46): 23-32.
    [16] 陈泽华,张裕,谢刚. 不一致决策表规则获取的粒计算方法[J]. 控制与决策,2015,30(4): 709-714.

    CHEN Zehua,ZHANG Yu,XIE Gang. GrC method of rule acquisition for inconsistent decision table[J]. Control and Decision,2015,30(4): 709-714. (in Chinese)
    [17] LI J H,REN Y,MEI C L,et al. A comparative study of multigranulation rough sets and concept lattices via rule acquisition[J]. Knowledge-Based Systems,2016,91: 152-164. doi: 10.1016/j.knosys.2015.07.024
    [18] 孙长嵩,董西国,张健沛. 一个基于粗糙集和决策树的最简分类规则集生成算法[J]. 哈尔滨工程大学学报,2002,23(5): 87-91.

    SUN Changsong,DONG Xiguo,ZHANG Jianpei. Algorithm based on rough set and decision tree to gain minimal classing rule set[J]. Journal of Harbin Engineering University,2002,23(5): 87-91. (in Chinese)
    [19] 王礼沅,张恒喜,徐浩军. 基于粗糙集的空战效能多指标综合评估模型[J]. 航空学报,2008,29(4): 880-885. doi: 10.3321/j.issn:1000-6893.2008.04.018

    WANG Liruan,ZHANG Hengxi,XU Haojun. Multi-index synthesize evaluation model based on rough set theory for air combat efficiency[J]. Acta Aeronautica et Astronautica Sinica,2008,29(4): 880-885. (in Chinese) doi: 10.3321/j.issn:1000-6893.2008.04.018
    [20] JIAN L R, LI M Y. A variable precision fuzzy rough set approach to a fuzzy-rough decision table[J]. Science and Engineering Research Center, 2016: 250-254.
    [21] 张清华,薛玉斌,王国胤. 粗糙集的最优近似集[J]. 软件学报,2016,27(2): 295-308.

    ZHANG Qinghua,XUE Yubin,WANG Guoyin. Optimal approximation sets of rough sets[J]. Journal of Software,2016,27(2): 295-308. (in Chinese)
    [22] ZHANG X,MEI C L,CHEN D G,et al. Feature selection in mixed data: a method using a novel fuzzy rough set-based information entropy[J]. Pattern Recognition,2016(56): 1-15.
    [23] ZHAN J M,ALI M I,MEHMOOD N. On a novel uncertain soft set model: Z-soft fuzzy rough set model and corresponding decision making methods[J]. Applied Soft Computing,2017(56): 446-457.
    [24] ZHAN J M,LIU Q,HERAWAN T. A novel soft rough set: soft rough hemirings and corresponding multicriteria group decision making[J]. Applied Soft Computing,2017(54): 393-402.
    [25] 张铁柱,蒋宏. 机载雷达和红外数据融合的智能目标识别[J]. 红外与激光工程,2010,39(4): 756-760. doi: 10.3969/j.issn.1007-2276.2010.04.037

    ZHANG Tiezhu,JIANG Hong. Intelligent target recognitionbased on the data fusion of radar and infrared imaging sensor[J]. Infrared and Laser Engineering,2010,39(4): 756-760. (in Chinese) doi: 10.3969/j.issn.1007-2276.2010.04.037
    [26] 李雪岩,李学伟,蒋君. 基于知识粒度特征的多目标粗糙集属性约简算法[J]. 控制与决策,2021,36(1): 196-205.

    LI Xueyan,LI Xuewei,JIANG Jun. Multi objective rough set attribute reduction algorithm based on the characteristics of knowledge granularity[J]. Control and Decision,2021,36(1): 196-205. (in Chinese)
    [27] BINH T P,ABOLFAZL J,INDRA P. A novel hybrid support vector machine with decision tree for data classification[J]. International Journal of Advanced and Applied Sciences,2017,4(9): 138-143. doi: 10.21833/ijaas.2017.09.019
    [28] 庞梦洋,索中英,郑万泽,等. 基于RS-CART决策树的航空发动机小样本故障诊断[J]. 航空动力学报,2020,35(7): 1559-1568.

    PANG Mengyang,SUO Zhongying,ZHENG Wanze,et al. Small sample fault diagnosis of aeroengine based on RS-CART decision tree[J]. Journal of Aerospace Power,2020,35(7): 1559-1568. (in Chinese)
  • 加载中
图(5) / 表(3)
计量
  • 文章访问数:  215
  • HTML浏览量:  26
  • PDF量:  342
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-16
  • 网络出版日期:  2023-04-03

目录

    /

    返回文章
    返回