留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于真实密度比的单/三排扇形孔气膜冷却性能及流阻特性

韦宏 祖迎庆

韦宏, 祖迎庆. 基于真实密度比的单/三排扇形孔气膜冷却性能及流阻特性[J]. 航空动力学报, 2021, 36(11): 2331-2343. doi: 10.13224/j.cnki.jasp.20210306
引用本文: 韦宏, 祖迎庆. 基于真实密度比的单/三排扇形孔气膜冷却性能及流阻特性[J]. 航空动力学报, 2021, 36(11): 2331-2343. doi: 10.13224/j.cnki.jasp.20210306
WEI Hong, ZU Yingqing. Film cooling performance and flow resistance characteristics of single/triple-row fan-shaped holes based on actual density ratio[J]. Journal of Aerospace Power, 2021, 36(11): 2331-2343. doi: 10.13224/j.cnki.jasp.20210306
Citation: WEI Hong, ZU Yingqing. Film cooling performance and flow resistance characteristics of single/triple-row fan-shaped holes based on actual density ratio[J]. Journal of Aerospace Power, 2021, 36(11): 2331-2343. doi: 10.13224/j.cnki.jasp.20210306

基于真实密度比的单/三排扇形孔气膜冷却性能及流阻特性

doi: 10.13224/j.cnki.jasp.20210306
基金项目: 上海市自然科学基金(19ZR1402500); 上海市商用航空发动机领域联合创新计划(AR908,AR960)
详细信息
    作者简介:

    韦宏(1988-),男,博士后,主要从事航空发动机热端部件冷却技术及高超声速飞行器预冷器等方面研究。

    通讯作者:

    祖迎庆(1978-),男,副研究员,博士,主要从事航空发动机气动热力学研究。E-mail:yzu@fudan.edu.cn

  • 中图分类号: V231.1

Film cooling performance and flow resistance characteristics of single/triple-row fan-shaped holes based on actual density ratio

  • 摘要: 在真实密度比条件下对单排和三排的扇形气膜孔的传热和流阻特性进行了实验研究。采用压敏漆(PSP)技术对单/三排定出口宽度的扇形孔进行风洞实验,研究了在真实密度比条件下不同孔形参数的扇形气膜孔的传热和流阻特性的差异,得到了不同孔形参数的扇形孔出现冷气射流吹离热侧壁面的大致临界吹风比以及实现展向平均气膜冷却效率最高的孔型结构参数。实验结果表明:在所研究的孔形参数范围内,扇形孔在吹风比小于1.5时没有出现冷气射流吹离壁面的现象,且倾斜角为20°、扩散角为15°的扇形孔的气膜冷却性能最好;而当吹风比为2.0时则出现了不同程度的吹离热侧壁面的现象,且倾斜角为25°、扩散角为10°的扇形孔的气膜冷却效率最大。此外,倾斜角为25°、扩散角为13°和倾斜角为30°、扩散角为10°的扇形孔流量系数最高。

     

  • [1] 韦宏,祖迎庆.双层壁冷却结构中多排射流冲击的换热和流阻特性[J].航空动力学报,2021,36(8):1621-1632.
    [2] GOLDSTEIN R J.Film cooling[J].Advances in Heat Transfer,1971,7:321-379.
    [3] 姚家旭,徐进,张科,等.横向间距与密度比对双射流气膜冷却特性影响[J].航空动力学报,2018,33(6):1336-1344.
    [4] GOLDSTEIN R J,ECKERT E R G,RHINE J W R.Film cooling with injection through holes:adiabatic wall temperatures downstream of a circular hole[J].Journal of Engineering for Power,1968,90(4):384-395.
    [5] BOGARD D G,THOLE K A.Gas turbine film cooling[J].Journal Propulsion Power,2006,22(2):249-270.
    [6] BUNKER R S.A review of shaped hole turbine film-cooling technology[J].Journal of Heat Transfer,2005,127(4):441-453.
    [7] KREWINKEL R.A review of gas turbine effusion cooling studies[J].International Journal of Heat and Mass Transfer,2013,66:706-722.
    [8] FRIC T F,ROSHKO A.Vortical structure in the wake of a transverse jet[J].Journal of Fluid Mechanics,1994,279:1-47.
    [9] GOLDSTEIN R J,ECKERT E R G.Effect of hole geometry and density on three-dimensional film cooling[J].International Journal of Heat and Mass Transfer,1974,17(5):595-607.
    [10] HYAMS D,LEYLEK J.A detailed analysis of film cooling physics:Part Ⅲ streamwise injection with shaped holes[J].Journal of Turbomachinery,2000,122(1):122-132.
    [11] SAUMWEBER C,SCHULZ A.Free-stream effects on the cooling performance of cylindrical and fan-shaped cooling holes[J].Journal of Turbomachinery,2012,134(6):061007.1-061007.12.
    [12] SAUMWEBER C,SCHULZ A.Effect of geometry variations on the cooling performance of fan-shaped cooling holes[J].Journal of Turbomachinery,2012,134(6):061008.1-061008.16.
    [13] HAVEN B A,KUROSAKA M.Kidney and anti-kidney vortices in crossflow jets[J].Journal of Fluid Mechanics,1997,352:27-64.
    [14] HAVEN B A,YAMAGATA D K,KUROSAKA M,et al.Anti-kidney pair of vortices in shaped holes and their influence on film cooling effectiveness[R].ASME Paper 97-GT-45,1997.
    [15] 孙小凯,彭威,姜培学.定出流面积条件下气膜冷却孔型的研究[J].工程热物理学报,2015,37(8):1711-1716.
    [16] SUN X K,ZHAO G,JIANG P X,et al.Influence of the hole geometry on the film cooling effectiveness for a constant exit flow area[J].Applied Thermal Engineering,2018,130:1404-1415.
    [17] COLBAN W F,THOLE K A,HAENDLER M.Experimental and computational comparisons of fan-shaped film cooling on a turbine vane surface[J].Journal of Turbomachinery,2007,129(1):23-31.
    [18] KOHLI A,BOGARD D.Effects of hole shape on film cooling with large angle injection[R].ASME Paper 99-GT-165,1999.
    [19] GRITSCH M,COLBAN W,SCHAR H,et al.Effect of hole geometry on the thermal performance of fan-shaped film cooling holes[J].Journal of Turbomachinery,2005,127(4):718-725.
    [20] HAN J C,DUTTA S,EKKAD S.Gas turbine heat transfer and cooling technology[M].Boca Raton,US:Taylor & Francis,2012.
    [21] ANDREI L,ANDREINI A,BIANCINI C,et al.Effusion cooling plates for combustor liners:experimental and numerical investigations on the effect of density ratio[J].Energy Procedia,2014,45:1402-1411.
    [22] YAO J X,XU J,ZHANG K,et al.Effect of density ratio on film-cooling effectiveness distribution and its uniformity for several hole geometries on a flat plate[R].ASME Paper GT2017-63743,2017.
    [23] KYLE R V,TRAVIS B W,LESLEY M W,et al.Combined effects of freestream pressure gradient and density ratio on the film cooling effectiveness of round and shaped holes on a flat plate[R].ASME Paper GT2016-56210,2016.
    [24] LIGRANI P M,BELL C M.Film cooling subject to bulk flow pulsations:effects of density ratio,hole length-to-diameter ratio,and pulsation frequency[J].International Journal of Heat and Mass Transfer,2001,44(10):2005-2009.
    [25] 韩昌.燃气轮机高温透平气膜冷却的孔型机理及叶栅特性研究[D].北京:清华大学,2014.
    [26] 张超,王湛,周嗣京,等.压力敏感涂料的标定及在气膜冷却效率测量中的应用[J].航空动力学报,2011,26(12):2691-2697.
    [27] MOFFAT R J.Describing the uncertainties in experimental results[J].Experimental Thermal and Fluid Science,1988,1(1):3-17.
  • 加载中
计量
  • 文章访问数:  70
  • HTML浏览量:  3
  • PDF量:  142
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-17
  • 刊出日期:  2021-11-28

目录

    /

    返回文章
    返回