留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

拉瓦尔喷管内射流凝结流动数值研究

傅德彬 杨珺凡 刘浩天 成红刚

傅德彬, 杨珺凡, 刘浩天, 等. 拉瓦尔喷管内射流凝结流动数值研究[J]. 航空动力学报, 2023, 38(9):2073-2083 doi: 10.13224/j.cnki.jasp.20210309
引用本文: 傅德彬, 杨珺凡, 刘浩天, 等. 拉瓦尔喷管内射流凝结流动数值研究[J]. 航空动力学报, 2023, 38(9):2073-2083 doi: 10.13224/j.cnki.jasp.20210309
FU Debin, YANG Junfan, LIU Haotian, et al. Numerical study on condensation of moist jet in Laval nozzle[J]. Journal of Aerospace Power, 2023, 38(9):2073-2083 doi: 10.13224/j.cnki.jasp.20210309
Citation: FU Debin, YANG Junfan, LIU Haotian, et al. Numerical study on condensation of moist jet in Laval nozzle[J]. Journal of Aerospace Power, 2023, 38(9):2073-2083 doi: 10.13224/j.cnki.jasp.20210309

拉瓦尔喷管内射流凝结流动数值研究

doi: 10.13224/j.cnki.jasp.20210309
基金项目: 基础加强计划重点基础研究项目(2019-JCJQ-ZD-045-04-02)
详细信息
    作者简介:

    傅德彬(1978-),男,副教授,博士,主要从事航天发射技术及气体动力学研究

  • 中图分类号: V238

Numerical study on condensation of moist jet in Laval nozzle

  • 摘要:

    为明确拉瓦尔喷管内流动凝结效应以及喷管几何条件、水蒸气含量等因素对凝结状态的影响,采用综合了流动控制方程、相变成核模型和粒子生长模型的欧拉离散相计算方法,对扩张比分别为2、3、4、5和水蒸气含量分别为10%、30%、50%、70%、90%、100%的模型进行数值计算分析。计算结果表明:水蒸气凝结对喷管内的流场参数具有显著影响,水蒸气凝结释放潜热,流场温度明显高于不考虑凝结效应的模型状态;随着扩张比增大,轴线上喷管出口处液滴半径增随着喷管扩张半角增大,轴线上液滴出现位置更靠近喉部,轴线上喷管出口处液滴半径增大;随着水蒸气含量增大,轴线上液滴出现位置更靠近喉部,水蒸气含量与液滴粒径之间表现为非线性关系。

     

  • 图 1  计算模型示意图

    Figure 1.  Geometry of computational models

    图 2  不同网格计算结果对比

    Figure 2.  Comparison between calculation results of different grid densities

    图 3  低压、高压状态对比模型示意图

    Figure 3.  Geometry comparison models at low and high pressure

    图 4  低压条件结果对比

    Figure 4.  4 Comparisons between computation and experiment results under low inlet pressure

    图 5  高压条件结果对比

    Figure 5.  Comparisons between computation and experiment under results high inlet pressure

    图 6  n=3时轴线上压强、温度、马赫数与液滴半径

    Figure 6.  Pressure, temperature, Mach number and droplet radius along axis when n=3

    图 7  有无凝结效应流场对比

    Figure 7.  Flow field comparison between non-condensation and condensation conditions

    图 8  不同半径扩张比喷管轴线上压强、温度、液滴半径、液滴及数密度分布

    Figure 8.  Pressure, temperature, droplet radius, and number density at nozzle axis of different nozzle radius ratios

    图 9  不同扩张半角模型轴线上压强、温度、液滴半径、液滴及数密度分布

    Figure 9.  Pressure, temperature, droplet radius, and number density at nozzle axis of different nozzle half angles

    图 10  不同水蒸气含量模型轴线上压强、温度、液滴半径、液滴及数密度分布

    Figure 10.  Pressure, temperature, droplet radius, and number density at nozzle axis of different humidity

    表  1  喷管入口条件设置

    Table  1.   Initial parameters of nozzle inlet

    模型编号rin/mmnxin/mmrt/mmxout/mm$ \theta $/(°)h/%Tin/Kpin/MPa
    a5025020113.4310505003
    5035020226.8510505003
    5045020340.2810505003
    5055020453.7010505003
    b5025020226.855505003
    5035020226.8510505003
    5045020226.8514.8505003
    5055020226.8519.4505003
    下载: 导出CSV

    表  2  计算初始条件

    Table  2.   Initial conditions

    模型Tin/Kpin/Pa来流组分
    低压条件354.62.5×104水蒸气
    高压条件5443.2×106水蒸气
    下载: 导出CSV

    表  3  出口处压强、温度、水蒸气含量及液滴半径

    Table  3.   Pressure, temperature, water vapor content and droplet radius at the outlet

    h/%pe/PaT/Kpsat/Pahe/%r/µm
    1040800.43282.781196.912.341.135
    2042929.58310.866527.3511.491.310
    3059895.79352.1445461.321.641.422
    4079429.08373.38102126.532.201.505
    5056972.7351.0743515.343.141.777
    6056821.61354.2349473.654.121.845
    7056868.73357.9657373.365.341.740
    8067629.17371.9096857.276.661.701
    9056401.84361.5966048.788.261.697
    10066114.21375.41109738.71001.747
    下载: 导出CSV
  • [1] WEGENER P P. Condensation phenomena in nozzles[J]. Progress in Astronautics and Rocketry,1964,15: 701-724.
    [2] HILL P G. Condensation of water vapour during supersonic expansion in nozzles[J]. Journal of Fluid Mechanics,1966,25(3): 593-620. doi: 10.1017/S0022112066000284
    [3] 孙皖,徐涛,刘秀芳,等. 凝结相变对低温风洞雷诺数试验的影响[J]. 航空动力学报,2020,35(9): 1893-1899.

    SUN Wan,XU Tao,LIU Xiufang,et al. Effect of condensation phase transient on Reynold number test for cryogenic wind tunnel[J]. Journal of Aerospace Power,2020,35(9): 1893-1899. (in Chinese)
    [4] FRANCESCO G,FEDERICO M,ADRIANO M. CFD modelling of the condensation inside a cascade of steam turbine blades: comparison with an experimental test case[J]. Energy Procedia,2017,126: 730-737. doi: 10.1016/j.egypro.2017.08.306
    [5] NAGIB ELMEKAWY A M,ALI M E H H. Computational modeling of non-equilibrium condensing steam flows in low-pressure steam turbines[J]. Results in Engineering,2020,5: 100065.1-100065.11.
    [6] 汤永智, 刘中良, 武洪强, 等. 蒸汽喷射器混合过程中凝结流态的可视化研究[J]. 工程热物理学报, 2019, 40(10): 2364-2372.

    TANG Yongzhi, LIU Zhongliang, WU Hongqiang, et al. Visualization study on the condensation flow regime in the mixing process of steam ejector[J]. Journal of Engineering Thermophysics, 2019, 40(10): 2364-2372. (in Chinese)
    [7] 杨文, 曹学文, 赵联祁, 等. 超声速旋流分离器内天然气液化过程研究[J]. 石油机械, 2015, 43(5): 87-91, 100.

    YANG Wen, CAO Xuewen, ZHAO Lianqi, et al. Study on natural gas liquefaction process within supersonic cyclone separator[J]. China Petroleum Machinery, 2015, 43(5): 87-91, 100. (in Chinese)
    [8] 杨文,曹学文,徐晓婷,等. 高速膨胀天然气凝结流动特性[J]. 石油学报(石油加工),2016,32(1): 73-81.

    YANG Wen,CAO Xuewen,XU Xiaoting,et al. Flow and condensation characteristics of natural gas with high speed expansion[J]. Acta Petrolei Sinica (Petroleum Processing Section),2016,32(1): 73-81. (in Chinese)
    [9] 曹学文,边江,靳学堂,等. 三组分气体超声速凝结过程数值模拟与实验研究[J]. 石油学报(石油加工),2019,35(1): 99-110.

    CAO Xuewen,BIAN Jiang,JIN Xuetang,et al. Numerical simulation and experimental study on supersonic condensation process of ternary mixture[J]. Acta Petrolei Sinica (Petroleum Processing Section),2019,35(1): 99-110. (in Chinese)
    [10] PAOLI R,SHARIFF K. Contrail modeling and simulation[J]. Annual Review of Fluid Mechanics,2016,48(1): 393-427. doi: 10.1146/annurev-fluid-010814-013619
    [11] DALIN P,PERMINOV V,PERTSEV N,et al. Optical studies of rocket exhaust trails and artificial noctilucent clouds produced by Soyuz rocket launches[J]. Journal of Geophysical Research:Atmospheres,2013,118(14): 7850-7863. doi: 10.1002/jgrd.50549
    [12] 李健兵,高航,王涛,等. 飞机尾流的散射特性与探测技术综述[J]. 雷达学报,2017,6(6): 653-672.

    LI Jianbing,GAO Hang,WANG Tao,et al. A survey of the scattering characteristics and detection of aircraft wake vortices[J]. Journal of Radars,2017,6(6): 653-672. (in Chinese)
    [13] 尚德敏,姜宝成,陈安斌,等. 燃油添加剂对喷气飞行器凝结尾迹的隐身作用[J]. 哈尔滨工业大学学报,1994,26(4): 24-27.

    SHANG Demin,JIANG Baocheng,CHEN Anbin,et al. Stealth function of jet aircraft’s condensation trail made of fuel additive[J]. Journal of Harbin Institute of Technology,1994,26(4): 24-27. (in Chinese)
    [14] YANG Yan,WALTHER J H,YAN Yuying,et al. CFD modeling of condensation process of water vapor in supersonic flows[J]. Applied Thermal Engineering,2017,115: 1357-1362. doi: 10.1016/j.applthermaleng.2017.01.047
    [15] 杨勇,于欢,沈胜强,等. 水蒸气跨声速流动中非平衡相变与激波的耦合作用[J]. 工程热物理学报,2013,34(7): 1347-1351. doi: 10.1007/s10765-013-1494-z

    YANG Yong,YU Huan,SHEN Shengqiang,et al. Coupling effect of shock and non-equilibrium phase change of transonic steam flow[J]. Journal of Engineering Thermophysics,2013,34(7): 1347-1351. (in Chinese) doi: 10.1007/s10765-013-1494-z
    [16] KUNG R T V,CIANCIOLO L,MYER J A. Solar scattering from condensation in Apollo translunar injection plume[J]. AIAA Journal,1975,13(4): 432-437. doi: 10.2514/3.49725
    [17] DYKAS S,MAJKUT M,SMOŁKA K,et al. Comprehensive investigations into thermal and flow phenomena occurring in the atmospheric air two-phase flow through nozzles[J]. International Journal of Heat and Mass Transfer,2017,114: 1072-1085. doi: 10.1016/j.ijheatmasstransfer.2017.06.131
    [18] MOSES C A,STEIN G D. On the growth of steam droplets formed in a Laval nozzle using both static pressure and light scattering measurements[J]. Journal of Fluids Engineering,1978,100(3): 311-322. doi: 10.1115/1.3448672
    [19] BAKHTAR F,ZIDI K. Nucleation phenomena in flowing high-pressure steam: experimental results[J]. Proceedings of the Institution of Mechanical Engineers: Part A Journal of Power Engineering,1989,203(3): 195-200. doi: 10.1243/PIME_PROC_1989_203_027_02
    [20] BAKHTAR F,ZIDI K. Nucleation phenomena in flowing high-pressure steam: Part Ⅱ theoretical analysis[J]. Proceedings of the Institution of Mechanical Engineers: Part A Journal of Power and Energy,1990,204(4): 233-242. doi: 10.1243/PIME_PROC_1990_204_032_02
    [21] EDATHOL J,BREZGIN D,ARONSON K,et al. Prediction of non-equilibrium homogeneous condensation in supersonic nozzle flows using Eulerian-Eulerian models[J]. International Journal of Heat and Mass Transfer,2020,152: 119451. doi: 10.1016/j.ijheatmasstransfer.2020.119451
    [22] WEN Chuang,KARVOUNIS N,WALTHER J H,et al. Non-equilibrium condensation of water vapour in supersonic flows with shock waves[J]. International Journal of Heat and Mass Transfer,2020,149: 119109. doi: 10.1016/j.ijheatmasstransfer.2019.119109
    [23] 刘光照,朱亚男. 晶体成核理论[J]. 人工晶体,1981,10(2): 1-34.

    LIU Guangzhao,ZHU Yanan. Crystal nucleation theory[J]. Journal of Synthetic Crystals,1981,10(2): 1-34. (in Chinese)
    [24] GYARMATHY G. The spherical droplet in gaseous carrier streams: review and synthesis[J]. Multiphase Science and Technology,1982,1(1/2/3/4): 99-279.
    [25] YOUNG J. Spontaneous condensation of steam in supersonic nozzles[J]. Physicochemical Hydrodynamics,1982,3(1): 57-82.
    [26] LAÍN S,ALIOD R. Study on the Eulerian dispersed phase equations in non-uniform turbulent two-phase flows: discussion and comparison with experiments[J]. International Journal of Heat and Fluid Flow,2000,21(3): 374-380. doi: 10.1016/S0142-727X(00)00023-0
    [27] GERBER A G,KERMANI M J. A pressure based Eulerian-Eulerian multi-phase model for non-equilibrium condensation in transonic steam flow[J]. International Journal of Heat and Mass Transfer,2004,47(10/11): 2217-2231.
    [28] MOORE M J, WALTERS P T, CRANE R I, et al. Predicting the fog fog-drop size in wet- stream turbines[C]// Proceedings of the IMechE Conference on Heat and Fluid Flow in Steam and Gas Trubine Plant, London: IMechE, 1973: 101-109.
  • 加载中
图(10) / 表(3)
计量
  • 文章访问数:  246
  • HTML浏览量:  35
  • PDF量:  270
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-18
  • 网络出版日期:  2023-07-13

目录

    /

    返回文章
    返回