留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

旋转对固体火箭发动机两相流点火过程影响仿真研究

覃生福 李军伟 张智慧 贺业 王宁飞

覃生福,李军伟,张智慧,等.旋转对固体火箭发动机两相流点火过程影响仿真研究[J].航空动力学报,2022,37(7):1503‑1515. doi: 10.13224/j.cnki.jasp.20210327
引用本文: 覃生福,李军伟,张智慧,等.旋转对固体火箭发动机两相流点火过程影响仿真研究[J].航空动力学报,2022,37(7):1503‑1515. doi: 10.13224/j.cnki.jasp.20210327
QIN Shengfu,LI Junwei,ZHANG Zhihui,et al.Simulation study on the influence of spin on ignition process of two⁃phase in solid rocket motor[J].Journal of Aerospace Power,2022,37(7):1503‑1515. doi: 10.13224/j.cnki.jasp.20210327
Citation: QIN Shengfu,LI Junwei,ZHANG Zhihui,et al.Simulation study on the influence of spin on ignition process of two⁃phase in solid rocket motor[J].Journal of Aerospace Power,2022,37(7):1503‑1515. doi: 10.13224/j.cnki.jasp.20210327

旋转对固体火箭发动机两相流点火过程影响仿真研究

doi: 10.13224/j.cnki.jasp.20210327
详细信息
    作者简介:

    覃生福(1994-),男,硕士生,主要从事旋转过载下固体火箭发动机点火特性研究。

    通讯作者:

    李军伟(1978-),男,副教授、博士生导师,博士,主要从事固体火箭发动机不稳定燃烧、液体微尺度燃烧、固体火箭发动机设计与仿真研究。E⁃mail:davie78lee@sina.com

  • 中图分类号: V435

Simulation study on the influence of spin on ignition process of two⁃phase in solid rocket motor

  • 摘要:

    为研究高速旋转对内外燃管型装药固体火箭发动机凝聚相点火瞬态过程的影响规律,应用计算流体动力学(CFD)流体计算软件,使用用户定义函数(UDF)编程接口建立固体火箭发动机点火模型,对旋转条件下发动机凝聚相点火过程进行模拟。将数值计算结果与地面旋转实验内弹道进行对比分析,验证数值模型的正确性。计算结果表明:①点火药燃气颗粒因旋转做离心运动,大量粒子聚集在燃烧室头部上端,部分粒子附着在发动机壁面,且停留时间较长。②点火药燃气颗粒占比从20%增加到40%,点火压力峰值降低3.93%,发动机转速的升高会造成内弹道平衡压力升高,但点火压力峰会逐渐降低,且峰值出现时间发生延迟,转速达到15 000 r/min时点火压力峰消失。③转速增大,点火颗粒与推进剂传热增大,火焰传播期减小,但燃气填充期和点火延迟增大,点火药燃气颗粒占比为20%时,转速为15 000 r/min较静止条件下点火延迟增加了23.76%。

     

  • 图 1  固体火箭发动机模型(单位:mm)

    Figure 1.  Solid rocket motor model (unit:mm)

    图 2  固体火箭发动机旋转点火药盒释放燃气和推进剂旋转释放燃气截面图

    Figure 2.  Schematic diagram of gases released from the igniter of spin solid rocket motor,cross⁃sectional released from the propellant

    图 3  高温点火颗粒与推进剂传热示意图

    Figure 3.  Schematic diagram of heat transfer between high temperature of ignition particles and propellant

    图 4  燃速比随旋转过载的变化规律

    Figure 4.  Relation between burning rate and rotation overload

    图 5  点火药盒燃气质量流量曲线

    Figure 5.  Mass flow flux of igniter combustion gas curves

    图 6  二维轴对称计算模型

    Figure 6.  Two⁃dimensional axisymmetric simulation model

    图 7  实验发动机模型(单位:mm)

    Figure 7.  Test solid rocket motor model (unit:mm)

    图 8  旋转点火实验示意图

    Figure 8.  Schematic diagram of spin ignition test

    图 9  实验与仿真压力曲线对比

    Figure 9.  Curves of the pressure for test data and numerical results

    图 10  不同网格数量压力变化

    Figure 10.  Curves of pressure for different grids

    图 11  发动机网格划分

    Figure 11.  Block and grid setup of solid rocket motor

    图 12  不同时间步长压力变化

    Figure 12.  Pressure variation with different time steps

    图 13  点火过程特性参数定义

    Figure 13.  Definitions of ignition process parameters

    图 15  10 ms时刻不同转速下发动机内部温度云图

    Figure 15.  Temperature contour of solid rocket motor at different spin speeds at 10 ms

    图 16  点火过程颗粒运动分布

    Figure 16.  Particle distribution at different times

    图 17  5 ms时刻不同转速下颗粒运动分布

    Figure 17.  Particle distribution at different spin speeds at 5 ms

    图 18  ω=0 r/min,γp=20%工况推进剂表面监测点P1P2P3三点温度随时间变化曲线

    Figure 18.  Temperature histories of three monitoring points P1P2 and P3 on propellant surface under the conditions of ω=0 r/min and γp=20%

    图 19  不同工况下推进剂表面监测点P1P2P3点燃时刻

    Figure 19.  Ignition time of monitoring points P1,P2 and P3 on propellant surface under different conditions

    图 20  静态下不同颗粒占比内弹道曲线(ω=0 r/min)

    Figure 20.  Internal ballistic curves of different particle ratios in static state (ω=0 r/min)

    图 21  不同转速内弹道曲线(γp=20%)

    Figure 21.  Internal ballistic curve of different spin speeds (γp=20%)

    图 22  压力变化曲线局部放大图(t=35~45 ms)

    Figure 22.  Partial enlarged view of pressure⁃time curve(t=35~45 ms)

    图 23  点火滞后期随转速变化情况

    Figure 23.  Variation of ignition lag with spin speed

    图 24  火焰传播期随转速变化情况

    Figure 24.  Variation of flame⁃spread with spin speed

    图 25  燃气填充期随转速变化情况

    Figure 25.  Variation of chamber⁃filling with spin speed

    图 26  点火延迟随转速变化情况

    Figure 26.  Variation of ignition delay with spin speed

    表  1  固体火箭发动机点火瞬态物理参数

    Table  1.   Physical parameters of ignition transient simulation in the solid rocket motor

    参数数值
    推进剂密度ρp/(kg/m31 680
    推进剂比定压热容cp,p/(J/(kgK))1 512
    推进剂导热系数λp/(W/(mK))0.24
    推进剂着火温度Tb/K700
    推进剂燃速压力指数n0.3
    推进剂燃速系数a/(m/(sMPan))0.004 7
    点火药比定压热容cp,ig/(J/(kgK))1 378
    点火药燃气颗粒半径Rd/μm30
    点火药燃气温度Tig/K2 590
    燃气温度Tg/K2 800
    燃气比定压热容cp,g/(J/(kgK))1 680
    燃气平均分子量Mg/(g/mol)24.7
    下载: 导出CSV

    表  2  实验发动机推进剂及点火药参数

    Table  2.   Parameters of propellant and ignition powder in the test solid rocket motor

    参数数值
    推进剂外径Dp/mm45
    推进剂内径dp/mm8
    推进剂长度Lp/mm120
    推进剂密度ρp/(kg/m31 640
    推进剂比定压热容cp,p/(J/(kgK))1 276
    推进剂导热系数λp/(W/(mK))0.32
    推进剂着火温度Tb/K682
    燃气比定压热容cp,g/(J/(kgK))1 516
    燃气温度Tg/K2 860
    推进剂燃速系数a/(m/(sMPan))0.008 3
    推进剂燃速压力指数n0.26
    点火药质量mig/g4
    下载: 导出CSV

    表  3  ω, γp

    Table  3.   ω and γp values

    ω/(r/min05 00010 00015 000
    γp/%(mig=10 g)203040
    下载: 导出CSV
  • [1] 蔡国飙,田辉.旋转对固体火箭发动机的影响[J].推进技术,1999,20(1):12⁃16.

    CAI Guobiao,TIAN Hui.Spinning effect on solid rocket motor[J].Journal of Propulsion Technology,1999,20(1):12⁃16.(in Chinese)
    [2] BASTRESS E K.Interior ballistics of spinning solid propellant rockets[J].Journal of Spacecraft and Rocket,1965,2(3):455⁃457.
    [3] 周海清,尤政,张平.颗粒传热增强对微型脉冲推力器点火过程的影响[J].固体火箭技术,2006,29(1):31⁃34.

    ZHOU Haiqing,YOU Zheng,ZHANG Ping.Effect of particle heat transfer enhancement on ignition process of miniature impulse thruster[J].Journal of Solid Rocket Technology,2006,29(1):31⁃34.(in Chinese)
    [4] 唐金兰,樊建龙,李进贤,等.SRM点火瞬态凝相粒子对火焰传播过程的影响[J].宇航学报,2008,29(5):142⁃146.

    TANG Jinlan,FAN Jianlong,LI Jinxian,et al.Effect of transient condensed phase particles on flame propagation in SRM ignition[J].Journal of Astronautics,2008,29(5):142⁃146.(in Chinese)
    [5] CROWE C T.A unified model for the acceleration⁃produced burning rate augmentation of metalized solid propellants[J].Combustion Science and Technology,1972,5(1):55⁃60.
    [6] KING M K.Critical review:modeling of acceleration effects on solid propellant combustion[J].AIAA Journal,1976,14(1):18⁃25.
    [7] FUCHS M,PERETZ A,TIMNAT Y.A parametric study of the effect of acceleration on the burning rate of metalized solid propellants[R].AIAA⁃1981⁃1584,1981.
    [8] 武晓松,王栋余.高速旋转固体火箭发动机的动态燃速特性研究[J].弹道学报,2005,17(2):5⁃11.

    WU Xiaosong,WANG Dongyu.Study on dynamic burning rate characteristics of high speed rotating solid rocket motor[J].Journal of Ballistics,2005,17(2):5⁃11.(in Chinese)
    [9] MANDA L J.Spin effects on rocket nozzle performance[J].Journal of Spacecraft and Rockets,1966,3(11):1695⁃1696.
    [10] FARQUHAR B W,HOFFMAN J D,NORTON D J.An analytical and experimental investigation of swirling flow in nozzle[J].AIAA Journal,1969,7(10):1992⁃2000.
    [11] MAGER A.Approximate solution of isentropic swirling flow through a nozzle[J].ARS Journal,31(8):1140⁃1148.
    [12] 王革,陈亮,郜冶,等.旋转对固体火箭发动机燃烧室燃气流动的影响[J].空气动力学学报,2008,26(2):208⁃211.

    WANG Ge,CHEN Liang,GAO Ye,et al.Effect of rotation on gas flow in solid rocket motor combustor[J].Acta Aerodynamica Sinica,2008,26(2):208⁃211.(in Chinese)
    [13] 刘平安,王革,郜冶.旋转固体火箭发动机燃烧室内流场分析解[J].固体火箭技术,2012,35(5):597⁃601.

    LIU Pingan,WANG Ge,GAO Ye.Analytical solution of combustion chamber flow field for rotating solid rocket motor[J].Journal of Solid Rocket Technology,2012,35(5):597⁃601.(in Chinese)
    [14] 张志峰,蔡体敏.旋转条件下固体火箭发动机三维内流场数值模拟[[J].固体火箭技术,2007,30(4):302⁃305.

    ZHANG Zhifeng,CAI Timin.Numerical simulation on 3D internal flow field of SRM under spinning condition[J].Journal of Solid Rocket Technology,2007,30(4):302⁃305.(in Chinese)
    [15] 冯喜平,赵胜海,曹琪.旋转固体发动机燃烧室⁃喷管两相流数值仿真[J].计算机仿真,2011,28(7):95⁃99.

    FENG Xiping,ZHAO Haisheng,CAO Qi.Numerical simulation on two⁃phase flow for spinning solid rocket motor chamber⁃nozzle[J].Journal of Computer Simulation,2011,28(7):95⁃99.(in Chinese)
    [16] WAESCHE R,SARGENT W H,MARCHMAN I.Space Shuttle solid rocket motor aft⁃end internal flows[J].Journal of Propulsion and Power,1989,5(6):650⁃656.
    [17] CIUCCI A,FOSTER W A.Experimental investigation of the flow field in the head⁃end star slot section of a solid rocket motor[R].AIAA⁃1992⁃3048,1992.
    [18] 白涛涛,张泽远,邢国强,等.带侵蚀效应的三维双燃速装药固体火箭发动机点火过程[J].航空动力学报,2018,33(5):241⁃247.

    BAI Taotao,ZHANG Zeyuan,XING Guoqiang,et al.Ignition process of 3⁃D dual⁃burning rate solid rocket motor with erosive burning[J],Journal of Aerospace Power,2018,33(5):241⁃247.(in Chinese)
    [19] 徐学文,王连生,牟俊林.某固体火箭发动机点火启动过程三维流场一体化仿真[J].固体火箭技术,2008,31(1):8⁃13.

    XU Xuewen,WANG Liansheng,MU Junlin.Integrated simulation on 3D flow field during ignition start⁃up of SRM[J].Journal of Solid Rocket Technology,2008,31(1):8⁃13.(in Chinese)
    [20] 高双武,强洪夫,周伟,等.基于子循环⁃预测校正的三维SRM点火瞬态流固耦合数值模拟[J].计算力学学报,2011,28(4):84⁃89.

    GAO Shuangwu,QIANG Hongfu,ZHOU Wei,et al.Three dimensional transient fluid structure coupling numerical simulation of SRM ignition based on subcycle predictive correction[J] Chinese Journal of Computational Mechanics,2011,28(4):84⁃89.(in Chinese)
    [21] LI Q,LIU P,HE G.Fluid⁃solid coupled simulation of the ignition transient of solid rocket motor[J].Acta Astronautica,2015,110:180⁃190.
    [22] EMELYANOV V N,TETERINA I V,VOLKOV K N,et al.Pressure oscillations and instability of working processes in the combustion chambers of solid rocket motors[J].Acta Astronautica,2016,135:161⁃171.
    [23] 丁鸿铭,卓长飞,陈浩田,等.基于点火药颗粒的固体火箭发动机点火瞬态过程数值研究[J].北京理工大学学报,2020,40(8):818⁃825.

    DING Hongming,ZHUO Changfei,CHEN Haotian,et al.Numerical study on ignition transient process of solid rocket motor based on ignition particle[J].Transactions of Beijing Institute of Technology,2020,40(8):818⁃825.(in Chinese)
    [24] GUAN D,LI S,SUI X,et al.Mechanism of influence of high⁃speed self⁃spin on ignition transients for a solid rocket motor:a numerical simulation[J].Propellants Explosives Pyrotechnics,2020,45(7):1040⁃1055.
    [25] 唐必顺,陈军,封锋,等.固体火箭发动机点火过程中点火具破膜过程的数值模拟[J].固体火箭技术,2013,36(6):753⁃757.

    TANG Bishun,CHEN Jun,FENG Feng,et al.Numerical simulation of diaphragm rupture process of igniter in ignition process of solid rocket motor[J].Journal of Solid Rocket Technology,2013,36(6):753⁃757.(in Chinese)
    [26] 郜治,刘平安,胡伟.长通道固体火箭发动机点火瞬态数值分析[J].哈尔滨工程大学学报,2011,32(8):988⁃991.

    GAO Ye,LIU PIngan,HU Wei.Numerical analysis of long passage SRM at ignition transient[J].Journal of Harbin Engineering University,2011,32(8):988⁃991.(in Chinese)
    [27] 孟亮飞.阶梯装药固体火箭发动机点火瞬态内流场特性研究[D].南京:南京理工大学,2011.

    MENG Liangfei.Study on transient internal flow field characteristics of stepped charge solid rocket motor[D] Nanjing:Nanjing University of Science and Technology,2011.(in Chinese)
    [28] PERETZ A,KUO K K,CAVENY LH,et al.The starting transient of solid⁃propellant rocket motors with high internal gas velocities[R].AIAA⁃1972⁃1119,1972.
    [29] GREATRIX D R,GOTTLIEB J.Model for prediction of normal acceleration augmentation of composite propellant combustion[J].Mental Retardation,1987,7(2):3⁃6.
    [30] 樊超.尾部点火双推力发动机点火过程研究[D].长沙:国防科学技术大学,2010.

    FAN Chao.Investigation of ignition transient in dual⁃trust rocket motors with aft⁃end igniter[D].Changsha:National Defense Science and Technology University,2010.(in Chinese)
    [31] 张为华,雷碧文.固体火箭发动机点火器的工程设计和流量估算[J].推进技术,1991(5):71⁃80.

    ZHANG Weihua,LEI Biwen.The engineering design and mass flow rate estimation of igniter in SRM[J].Journal of Propulsion Technology,1991(5):71⁃80.(in Chinese)
  • 加载中
图(30) / 表(3)
计量
  • 文章访问数:  54
  • HTML浏览量:  14
  • PDF量:  22
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-26

目录

    /

    返回文章
    返回