留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种可变弯度叶片式旋流畸变发生器设计技术

张新雨 屠宝锋 方锐 杨光

张新雨,屠宝锋,方锐,等.一种可变弯度叶片式旋流畸变发生器设计技术[J].航空动力学报,2022,37(9):1957‑1969. doi: 10.13224/j.cnki.jasp.20210343
引用本文: 张新雨,屠宝锋,方锐,等.一种可变弯度叶片式旋流畸变发生器设计技术[J].航空动力学报,2022,37(9):1957‑1969. doi: 10.13224/j.cnki.jasp.20210343
ZHANG Xinyu,TU Baofeng,FANG Rui,et al.Design technology of a variable curvature blade type swirl distortion generator[J].Journal of Aerospace Power,2022,37(9):1957‑1969. doi: 10.13224/j.cnki.jasp.20210343
Citation: ZHANG Xinyu,TU Baofeng,FANG Rui,et al.Design technology of a variable curvature blade type swirl distortion generator[J].Journal of Aerospace Power,2022,37(9):1957‑1969. doi: 10.13224/j.cnki.jasp.20210343

一种可变弯度叶片式旋流畸变发生器设计技术

doi: 10.13224/j.cnki.jasp.20210343
基金项目: 

国家科技重大专项(J2019⁃Ⅴ⁃0017⁃0112) 

详细信息
    作者简介:

    张新雨(1997-),男,硕士生,研究领域为内流与叶轮机械。E⁃mail:zxy970530@163.com

    通讯作者:

    屠宝锋(1981-),男,讲师,博士,研究领域为内流与叶轮机械。E⁃mail:tubaofeng@126.com

  • 中图分类号: V231.3

Design technology of a variable curvature blade type swirl distortion generator

  • 摘要:

    为了研究进气旋流畸变对压气机性能和稳定性的影响,设计了一种能够产生典型对涡与整体涡可变弯度叶片式旋流畸变发生器。结合正交仿真试验设计方法,分别以对涡旋流强度为优化目标和以对涡旋流强度、整体涡旋流强度和整体涡总压恢复系数为综合优化目标对旋流畸变发生器的几何参数,包括叶片稠度、叶片数量以及轮毂比等进行气动优化设计,并采用CFD数值模拟仿真研究了旋流畸变发生器生成旋流特征。经过单指标优化分析,旋流畸变发生器生成对涡旋流强度最高可达24.60°,整体涡旋流强度最高可达38.73°。经过多指标综合优化,旋流畸变发生器生成对涡和整体涡的总压恢复系数分别提高了4.26%和3.57%。叶片式旋流畸变发生器设计具有结构简单、操作方便、试验周期短等优点,并具有较好的工程应用性。

     

  • 图 1  可变弯度叶片式旋流畸变发生器总体结构

    Figure 1.  Configuration of the variable curvature blade⁃type swirl distortion generator

    图 2  可变弯度叶片

    Figure 2.  Variable curvature blade

    图 3  旋流畸变发生器的调节形式

    Figure 3.  Regulating forms of the swirl distortion generator

    图 4  计算域

    Figure 4.  Computational domain

    图 5  对涡旋流强度沿轴向变化

    Figure 5.  Variation of twin swirl intensity at the different axial positions

    图 6  对涡旋流方向沿轴向变化

    Figure 6.  Variation of twin swirl directivity at the different axial positions

    图 7  网格无关性验证

    Figure 7.  Grid independent verification

    图 8  35°对涡旋流畸变发生器旋流强度沿轴向变化(τ=1.17n=16σ=0.4

    Figure 8.  Variation of swirl intensity at the different axial positions for the 35° twin swirl distortion generator (τ=1.17,n=16,σ=0.4

    图 9  AIP界面处对涡总压分布

    Figure 9.  Total pressure distribution of the twin swirl on AIP interface

    图 10  对涡马赫数与速度矢量分布

    Figure 10.  Mach number and velocity vectors distribution of twin swirl

    图 11  对涡旋流角分布

    Figure 11.  Swirl angle distribution of twin swirl

    图 13  AIP界面处整体涡总压分布

    Figure 13.  Total pressure distribution of the bulk swirl on AIP interface

    图 14  整体涡马赫数与速度矢量分布

    Figure 14.  Mach number and velocity vectors distribution of bulk swirl

    图 15  整体涡旋流角分布

    Figure 15.  Swirl angle distribution of bulk swirl

    图 17  对涡旋流角分布(τ=1.17n=16

    Figure 17.  Swirl angle distribution of twin swirl (τ=1.17,n=16

    图 18  整体涡旋流角分布(τ=1.17n=16

    Figure 18.  Swirl angle distribution of bulk swirl(τ=1.17,n=16

    表  1  各设计因素水平

    Table  1.   Orthogonal factors and levels

    因素名称水平稠度叶片数轮毂比
    10.8380.2
    21.00120.3
    31.17160.4
    下载: 导出CSV

    表  2  对涡旋流畸变发生器正交模拟试验结果

    Table  2.   Results of the orthogonal test of twin swirl distortion generator

    编号稠度叶片数轮毂比旋流强度/(°)(评价指标)
    10.8380.415.254
    20.83120.312.932
    30.83160.213.251
    41.1780.318.067
    51.17120.219.329
    61.17160.424.596
    71.0080.216.053
    81.00120.423.129
    91.00160.319.636
    下载: 导出CSV

    表  3  对涡旋流强度方差分析

    Table  3.   Variance analysis of the twin swirl intensity

    方差来源离差平方和自由度平均离差平方和F
    稠度81.630240.815607.466
    叶片数11.81125.90687.896
    轮毂比40.248220.124299.515
    残差0.13420.067
    注:F0.05(2,2)=19、F0.01(2,2)=99。
    下载: 导出CSV

    表  4  不同设计参数对对涡旋流强度的影响

    Table  4.   Effect of different design parameters on the twin swirl intensity

    参数稠度叶片数轮毂比
    K141.43749.37562.980
    K261.99355.39150.635
    K358.81857.48348.633
    R17.3818.10814.347
    下载: 导出CSV

    表  5  对涡发生器总压恢复系数对比

    Table  5.   Comparison of total pressure recovery coefficient of twin swirl generator

    编号稠度叶片数轮毂比总压恢复系数(评价指标)
    10.8380.40.909
    20.83120.30.944
    30.83160.20.959
    41.1780.30.893
    51.17120.20.876
    61.17160.40.884
    71.0080.20.946
    81.00120.40.905
    91.00160.30.936
    下载: 导出CSV

    表  6  对涡总压恢复系数方差分析

    Table  6.   Variance analysis of total pressure recovery coefficient of twin swirl

    方差来源离差平方和/10-4自由度平均离差平方和/10-4F
    稠度48.91224.469.793
    叶片数4.9522.4750.991
    轮毂比13.8226.9102.768
    残差4.99022.495
    残差9.94042.485
    注:F0.05(2,4)=6.94、F0.01(2,4)=18。“残差”代表当量误差,后文同。
    下载: 导出CSV

    表  7  整体涡发生器正交模拟试验结果

    Table  7.   Results of the orthogonal simulation test of bulk swirl generator

    编号稠度叶片数轮毂比评价指标
    旋流强度/(°)总压恢复系数
    10.8380.427.4840.948
    20.83120.327.1160.961
    30.83160.226.9060.972
    41.1780.337.4150.951
    51.17120.238.2270.966
    61.17160.438.7270.932
    71.0080.233.0440.971
    81.00120.433.7850.933
    91.00160.333.3570.956
    下载: 导出CSV

    表  8  整体涡强度方差分析

    Table  8.   Variance analysis of bulk swirl intensity

    方差来源离差平方和自由度平均离差平方和F
    稠度181.122290.5611 038.701
    叶片数0.28020.1401.606
    轮毂比0.87120.4354.995
    残差0.17420.087
    注:F0.05(2,2)=19、F0.01(2,2)=99。
    下载: 导出CSV

    表  9  整体涡总压恢复系数方差分析

    Table  9.   Variance analysis of total pressure recovery coefficient of bulk swirl

    方差来源离差平方和/10-4自由度平均离差平方和/10-4F
    稠度1.75320.876 55.447
    叶片数0.245 020.122 50.761
    轮毂比15.3827.69047.780
    残差0.322 020.161
    残差2.32041.160
    注:F0.05(2,4)=6.94、F0.01(2,4)=18。
    下载: 导出CSV

    表  10  旋流畸变发生器多目标优化设计结果

    Table  10.   Multi⁃objective optimization design results of the swirl distortion generator

    编号评价指标综合得分
    对涡旋流强度对涡总压恢复系数整体涡旋流强度整体涡总压恢复系数
    12.7924.6171.4404.6463.218
    21.0008.3751.1607.6434.195
    31.24610.0001.00010.0005.100
    44.9622.8879.0015.3545.763
    55.9361.0009.6198.7216.497
    610.0001.91010.0001.0006.173
    73.4088.5225.6139.8596.662
    88.8684.1376.2371.2525.339
    96.1727.4425.9116.3646.429
    下载: 导出CSV

    表  11  不同设计参数对旋流发生器总体性能的影响

    Table  11.   Effect of different design parameters on overall performance of the swirl generator

    参数稠度叶片数轮毂比
    K112.51315.64314.730
    K218.43316.03216.387
    K318.43117.70118.259
    R5.9201.6703.529
    下载: 导出CSV
  • [1] AULEHLA F.Intake swirl:a major disturbance parameter in engine/intake compatibility[C]∥Proceedings of the 13th congress of International Council of the Aeronautical Sciences.Seattle,US:International Council of the Aeronautical Sciences,1982:1415⁃1424.
    [2] LOTTER K W,JORG J.The effect of intake flow disturbances on APU compressor blade high cycle fatigue in the Airbus A300[R].AIAA CAS⁃82⁃4.6,1982.
    [3] 姜健,屈霁云,史建邦.进气道旋流发生器的设计与数值模拟[J].燃气涡轮试验与研究,2008,21(1):43⁃46.

    JIANG Jian,QU Jiyun,SHI Jianbang.Design and numerical simulation of intake swirl generator[J].Gas Turbine Experiment and Research,2008,21(1):43⁃46.(in Chinese)
    [4] GENSSLER H P,MEYER W,FOTTNER L.Development of intake swirl generators for turbo jet engine testing[R].DTIC (Defense Technical Information Center) Document,ADP005473,1987.
    [5] SCHMID N R,LEINHOS D C,FOTTNER L.Steady performance measurements of a turbofan engine with inlet distortions containing co⁃and counter rotating swirl from an intake diffuser for hypersonic flight[J].Journal of Turbomachinery,2001,123(2):379⁃385.
    [6] PAZUR W,FOTTNER L.The influence of inlet swirl distortions on the performance of a jet propulsion two⁃stage axial compressor[R].ASME Paper 90⁃GT⁃147,1990.
    [7] FLITCROFT J E,DUNHAM J,ABBOTT W A.Transmission of inlet distortion through a fan[R].DTIC (Defense Technical Information Center) Document,ADP005469,1987.
    [8] GOVARDHAN M,VISWANATH K.Investigations on an axial flow fan stage subjected to circumferential inlet flow distortion and swirl[J].Journal of Thermal Science,1997,6(4):241⁃250.
    [9] DAVID B,KEVIN C,PETER K.Development of improved method for simulating aircraft inlet distortion in turbine engine ground tests[R].AIAA⁃2002⁃3045,2002.
    [10] SHEORAN Y,BOULDIN B,KRISHNAN P M.Advancements in the design of an adaptable swirl distortion generator for testing gas turbine engines[R].ASME Paper GT2009⁃59146,2009.
    [11] DAVIS M,BEALE D,SHEORAN Y.Integrated test and evaluation techniques as applied to an inlet swirl investigation using the F109 gas turbine engine[R].ASME Paper GT2008⁃50074,2008.
    [12] SHEORAN Y,BOULDIN B,KRISHNAN P.Compressor performance and operability in swirl distortion[J].Journal of Turbomachinery,2012,134(4):2453⁃2464.
    [13] KEVIN M H,WALTER F,O'BRIEN W F.The streamvane method:a new way to generate swirl distortion for jet engine research[R].AIAA⁃2013⁃3665,2013.
    [14] NELSON M,LOWE K T,O'BRIEN W F,et al.Stereoscopic PIV measurements of swirl distortion on a full⁃scale turbo⁃fan engine inlet[R].AIAA⁃2014⁃0533,2014.
    [15] GUIMARÃES T,LOWE K T,NELSON M,et al.Stereoscopic PIV measurements in a turbofan engine inlet with tailored swirl distortion[R].AIAA⁃2015⁃2866,2015.
    [16] 张磊.新型旋流畸变网的设计及与跨声速压气机联合仿真研究[D].西安:空军工程大学,2018.

    ZHANG Lei.Design of new type of swirl distortion screen and joint simulation with a transonic compressor[D].Xi'an:Air Force Engineering University,2018.(in Chinese)
    [17] 屠宝锋,胡骏,尹超.叶片式旋流畸变发生器数值模拟研究[J].推进技术,2015,36(12):1817⁃1824.

    TU Baofeng,HU Jun,YIN Chao.Numerical simulation for blade type swirl distortion generator[J].Journal of Propulsion Technology,2015,36(12):1817⁃1824.(in Chinese)
    [18] 叶飞.进气道出口旋流模拟技术[D].南京:南京航空航天大学,2007.

    YE Fei.Simulated technology of intake swirl[D].Nanjing:Nanjing University of Aeronautics and Astronautics,2007.(in Chinese)
    [19] 宋国兴,李军,周游天,等.轴流压气机进气旋流畸变实验与仿真研究[J].风机技术,2017,59(5):2⁃12.

    SONG Guoxing,LI Jun,ZHOU Youtian,et al.The experiment and simlation of inlet swirl distortion for axial compressor[J].Chinese Journal of Turbomachinery,2017,59(5):2⁃12.(in Chinese)
    [20] Society of Automotive Engineers.A method for assessing inlet swirl distortion[R].S16 Turbine Engine Inlet Flow Distortion Committee,AIR 5686,2010.
    [21] 彭成一,马家驹,尹军飞.新机试飞中的进气道旋流测量[J].推进技术,1994,15(4):8⁃13.

    PENG Chengyi,MA Jiaju,YIN Junfei.Measurement of inlet swirls in flight[J].Journal of Propulsion Technology,1994,15(4):8⁃13.(in Chinese)
    [22] 费智聪.熵权‑层次分析法与灰色‑层次分析法研究[D].天津:天津大学,2009.

    FEI Zhicong.Study on the hierarchy analysis based on entropy method‑hierarchy analysis and gray relational analysis method[D].Tianjin:Tianjin University,2009.(in Chinese)
  • 加载中
图(20) / 表(11)
计量
  • 文章访问数:  106
  • HTML浏览量:  23
  • PDF量:  32
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-02
  • 网络出版日期:  2022-10-14

目录

    /

    返回文章
    返回