留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

航空发动机附件综合热管理性能分析

苏存要 连文磊 郝鑫 任雪萍

苏存要,连文磊,郝鑫,等.航空发动机附件综合热管理性能分析[J].航空动力学报,2022,37(9):1896‑1904. doi: 10.13224/j.cnki.jasp.20210344
引用本文: 苏存要,连文磊,郝鑫,等.航空发动机附件综合热管理性能分析[J].航空动力学报,2022,37(9):1896‑1904. doi: 10.13224/j.cnki.jasp.20210344
SU Cunyao,LIAN Wenlei,HAO Xin,et al.Analysis of integrated thermal management performance of aero⁃engine accessories[J].Journal of Aerospace Power,2022,37(9):1896‑1904. doi: 10.13224/j.cnki.jasp.20210344
Citation: SU Cunyao,LIAN Wenlei,HAO Xin,et al.Analysis of integrated thermal management performance of aero⁃engine accessories[J].Journal of Aerospace Power,2022,37(9):1896‑1904. doi: 10.13224/j.cnki.jasp.20210344

航空发动机附件综合热管理性能分析

doi: 10.13224/j.cnki.jasp.20210344
详细信息
    作者简介:

    苏存要(1996-),男,硕士生,主要从事航空发动机热管理方面的研究。

    通讯作者:

    连文磊(1982-),男,副教授,博士,主要从事航空飞行器热管理方面的研究。E⁃mail:wenlian@nuaa.edu.cn

  • 中图分类号: V236

Analysis of integrated thermal management performance of aero⁃engine accessories

  • 摘要:

    针对航空发动机舱内附件面临的热问题,提出了以隔热、通油冷却、通风冷却等为热防护措施的综合热管理方案,通过实验研究了隔热、通油冷却、通风冷却对附件温度的影响,获得了机匣温度、初始燃油温度及燃油流量等对附件表面温度及进出口燃油温升的影响规律。结果表明:隔热能够显著降低附件表面温度增长速率,在100 min工作时间内能够有效控制附件表面温度保持在200 ℃以下;附件表面温度的主要影响因素为初始燃油温度、加热功率、燃油流量,其中初始燃油温度决定附件进口温度,加热功率、燃油流量决定附件进出口温差,三者共同决定附件表面温度;通风冷却对未采取通油冷却的附件有一定的冷却效果,对采取通油冷却的附件没有明显的冷却效果。

     

  • 图 1  实验系统原理图

    Figure 1.  Schematic diagram of test system

    图 2  温度控制逻辑图

    Figure 2.  Temperature control logic diagram

    图 3  附件加热方式

    Figure 3.  Accessories heating method

    图 4  实验系统图

    Figure 4.  Test system diagram

    图 5  高温燃油冷却系统原理图

    Figure 5.  Schematic diagram of high temperature fuel cooling system

    图 6  附件硅酸铝隔热层加装示意图

    Figure 6.  Sketch of the installation of aluminum silicate of the accessories

    图 7  附件安装位置及燃油管路示意图

    Figure 7.  Sketch of installation location and fuel pipeline of the accessories

    图 8  传热关系图

    Figure 8.  Heat transfer diagram

    图 9  发动机舱热环境温度分布图

    Figure 9.  Thermal environment temperature distribution of engine compartment

    图 10  附件表面温度变化图

    Figure 10.  Surface temperature change diagram of the accessories

    图 11  附件传热关系示意图

    Figure 11.  Sketch of heat transfer relation the accessories

    图 12  不同机匣温度下冲压舱油路沿程温度分布

    Figure 12.  Temperature distribution along the oil path of the stamping chamber at different casing temperatures

    图 13  不同初始燃油温度下冲压舱油路沿程温度分布

    Figure 13.  Temperature distribution along the oil path of the stamping chamber at different initial fuel temperatures

    图 14  不同燃油流量下冲压舱油路沿程温度分布

    Figure 14.  Temperature distribution along the oil path of the stamping chamber at different fuel mass flows

    表  1  各附件的热功率

    Table  1.   Thermal power of each accessory

    冲压附件热功率P/kW
    0.801
    2.8
    下载: 导出CSV

    表  2  不同机匣温度下附件的表面温度

    Table  2.   Surface temperature of the accessories at different casing temperatures

    冲压机匣温度/℃表面温度/℃
    冲压附件Ⅰ冲压附件Ⅱ
    227122.4134.4
    327122.6135.1
    427131.1135.6
    下载: 导出CSV

    表  3  不同初始燃油温度下附件的表面温度

    Table  3.   Surface temperature of the accessories at different initial fuel temperatures

    初始油温/℃表面温度/℃
    冲压附件Ⅰ冲压附件Ⅱ
    9397.5111.5
    120131.1135.0
    下载: 导出CSV

    表  4  不同燃油流量下附件的表面温度

    Table  4.   Surface temperature of fuel pump at different fuel mass flows

    燃油流量表面温度/℃
    冲压附件Ⅰ冲压附件Ⅱ
    qm128.8155.4
    3.5qm128.6142.0
    下载: 导出CSV
  • [1] 唐硕,龚春林,陈兵.组合动力空天飞行器关键技术[J].宇航学报,2019,40(10):1103⁃1114.

    TANG Shuo,GONG Chunlin,CHEN Bing.The key technologies for aerospace with combined cycle engine[J].Journal of Astronautics ,2019,40(10):1103⁃1114.(in Chinese)
    [2] MARSHALL A W,GUPTA A K,LEWIS M J.Critical issues in TBCC modeling[R].Fort Lauderdale,Florida,US: the 40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit,2004.
    [3] 陈宏,何国强.RBCC和TBCC组合发动机在RLV上的应用[J].火箭推进,2008,34(3):40⁃42.

    CHEN Hong,HE Gouqiang.Application of RBCC and TBCC engines to RLVs[J].Journal of Rocket Propulsion,2008,34(3):40⁃42.(in Chinese)
    [4] HENDRINK P,MARD S M.ACES sanger⁃type T.S.T.O.family with common first stage [R].AIAA ⁃98⁃3229,1998.
    [5] BRADFORD J E,CHARANIN A,WALLACE J,et al.Quicksat:a two stage to orbit reusable launch vehicle utilizing air⁃breathing propulsion for responsive space access[R].AIAA 2002⁃5958,2004.
    [6] 陈大光.高超声速飞行与TBCC方案简介[J].航空发动机,2006,32 (3):10⁃13.

    CHEN Daguang.Brief introduction of hypersonic flight and TBCC concept[J].Aeroengine,2006,32(3):10⁃13.(in Chinese)
    [7] 刘建,王清平.空天组合动力对先进结构热防护技术的需求分析[R].河南 洛阳:中国航天第3专业信息网第3届空天动力联合会议,2018.
    [8] BERTIN J J,CUMMINGS R M.Fifty years of hypersonics: where we've been,where we're going[J].Progress in Aerospace Sciences,2003,39(6/7):511⁃536.
    [9] 梁馨,罗丽娟,谭珏,方洲,郭鸿俊.美国空间探测器热防护材料发展现状及趋势[J].材料导报,2016,30(S1):551⁃557.

    LIANG Xin,LUO Lijuan,TAN Jue,et al.Current statusand trendof thermal protection material for space exploration in america[J].Materials Reports,2016,30(S1):551⁃557.(in Chinese)
    [10] 陈悦.飞机燃油系统热负荷计算及热管理分析[D].南京:南京航空航天大学,2014.

    CHEN Yue.Heat sink calculation and the analysis of thermal management for aircraft fuel system[D].Nanjing:Nanjing University of Aeronautics and Astronautics,2014.(in Chinese)
    [11] ERIC G,DANIEL H.Thermal management and fuel system model for TBCC dynamic simulation[R].AIAA 2010⁃6642,2010.
    [12] FISCHER A J.Design of a fuel thermal management system for long range air vehicles[R].AIAA 2005⁃5647,2005.
    [13] 徐志英,庄达民.飞机燃油系统热管理研究[J].航空动力学报,2007,22(11):1833⁃1837.

    XU Zhiying,ZHUANG Da min.Research of heat management for aircraft fuel system[J].Journal of Aerospace Power,2007,22(11):1833⁃1837.(in Chinese)
    [14] 娄德仓.高超声速组合动力装置热防护技术及整机热管理[R].贵阳:中国航空学会第7届动力年会,2010.
    [15] 李帅.航空发动机燃油管路热防护研究[D].南京:南京航空航天大学,2014.

    LI Shuai.Research on thermal protection of aero⁃engine fuel supply line[D].Nanjing:Nanjing University of Aeronautics and Astronautics,2014.(in Chinese)
    [16] 刘友宏,周友鹏,郜晶晶.某型组合发动机舱元组件热防护设计与分析[J].热科学与技术,2017,16(3):193⁃200.

    LIU Youhong,ZHOU Youpeng,GAO Jingjing.Preli minary study on thermal⁃protection of components in X⁃combined engine cabin[J].Thermal Science and Technology,2017,16(3):193⁃200.(in Chinese)
    [17] 刘友宏,赵晓旺.涡轮基组合循环发动机燃油系统流动传热耦合仿真软件开发[EB/OL].[2020⁃09⁃09].https:∥doi.org/10.13675/j.cnki.tjjs.200254 doi: 10.13675/j.cnki.tjjs.200254
    [18] 郝鑫,苏存要.TBCC组合动力系统机舱及附件热防护实验研究[R].江苏 南通:江苏省工程热物理年会,2020.
  • 加载中
图(17) / 表(4)
计量
  • 文章访问数:  180
  • HTML浏览量:  26
  • PDF量:  81
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-02

目录

    /

    返回文章
    返回