留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同形状涵道风扇推进特性数值分析

孙蓬勃 周洲 郭佳豪

孙蓬勃, 周洲, 郭佳豪. 不同形状涵道风扇推进特性数值分析[J]. 航空动力学报, 2022, 37(12):2736-2748 doi: 10.13224/j.cnki.jasp.20210354
引用本文: 孙蓬勃, 周洲, 郭佳豪. 不同形状涵道风扇推进特性数值分析[J]. 航空动力学报, 2022, 37(12):2736-2748 doi: 10.13224/j.cnki.jasp.20210354
SUN Pengbo, ZHOU Zhou, GUO Jiahao. Numerical analysis for propulsion characteristics of ducted fans in different shapes[J]. Journal of Aerospace Power, 2022, 37(12):2736-2748 doi: 10.13224/j.cnki.jasp.20210354
Citation: SUN Pengbo, ZHOU Zhou, GUO Jiahao. Numerical analysis for propulsion characteristics of ducted fans in different shapes[J]. Journal of Aerospace Power, 2022, 37(12):2736-2748 doi: 10.13224/j.cnki.jasp.20210354

不同形状涵道风扇推进特性数值分析

doi: 10.13224/j.cnki.jasp.20210354
基金项目: 陕西省自然科学基金(2019JM-044); 民机专项(MJ-2015-F-009); 陕西省重点研发项目(2021ZDLGY09-08)
详细信息
    作者简介:

    孙蓬勃(1996-),男,博士生,主要研究方向为分布式推进飞行器气动设计

  • 中图分类号: V211

Numerical analysis for propulsion characteristics of ducted fans in different shapes

  • 摘要:

    以分布式涵道风扇推进为背景,使用多重参考系(MRF)和给定力分布的动量源方法(MSM)求解雷诺平均N-S(RANS)方程,对不同形状涵道风扇推进特性进行了数值模拟分析。对桨盘与不同形状涵道壁面之间的相互作用原理进行了研究,进而对不同外形分布式涵道风扇进行了分析。结果表明:纯圆形机匣推进特性最佳,纯方形最差,由方转圆的机匣推进特性居中;非圆机匣圆角的存在会诱使机匣内壁出现分离,产生干扰阻力,且圆角半径越小,影响越显著;非圆机匣影响风扇进口面积和桨尖涡的大小,从而从桨盘效率和唇口吸力两方面影响涵道推进效率。

     

  • 图 1  计算涵道风扇

    Figure 1.  Computational ducted fan

    图 2  涵道测量装置与尾迹测量区域示意

    Figure 2.  Duct measuring equipment and wake measurement area

    图 3  尾迹实验结果与数值计算结果对比

    Figure 3.  Comparison of wake measurement results and those of numerical calculation

    图 4  桨叶影响范围划分

    Figure 4.  Division of blade influence area

    图 5  非圆涵道外形与网格示意

    Figure 5.  Mesh and shape of non-circular ducted fan

    图 6  桨盘后5 mm处轴向流场截面

    Figure 6.  Axial flow field section at 5 mm behind the propeller panel

    图 7  不同内壁圆角半径下的涵道壁形状

    Figure 7.  Shape of duct wall under different inner rounded radius

    图 8  涵道风扇剖面形状示意

    Figure 8.  Profile of the ducted fan

    图 9  各涵道壁外形

    Figure 9.  Shape of different duct walls

    图 10  涵道壁表面流动观察方向示意

    Figure 10.  Observation direction of flow on the surface of duct walls

    图 11  不同形状涵道壁表面压强分布与极限流线

    Figure 11.  Pressure distribution and limit streamline on the surface of duct wall with different shapes

    图 12  不同速度下各形状涵道风扇拉力

    Figure 12.  Tension of ducted fans with different shapes and different speeds

    图 13  不同速度下圆涵道唇口流场

    Figure 13.  Flow field of circle duct’s lip at different speeds

    图 14  V=30 m/s下方转圆涵道流场

    Figure 14.  Flow field of square-to-circle duct at V=30 m/s

    图 15  V=15 m/s下不同形状涵道唇口流场

    Figure 15.  Flow field of different shapes of duct lip at V=15 m/s

    图 16  V=15 m/s下桨叶拉力在一个周期内平均分布

    Figure 16.  Loads average distribution of blades in one period at V=15 m/s

    图 17  单独转子和圆涵道桨叶前表面极限流线及前后面压强分布

    Figure 17.  Limit streamlines in front surface with pressure distributions of isolate rotor and circular ducted fan

    图 18  不同相位处桨叶载荷分布

    Figure 18.  Blade load distribution at different phases

    图 19  方涵道叶片前表面压力分布及叶片1与叶片2在径向45 mm截面处的叶素流场

    Figure 19.  Pressure distribution on front surface of square ducted fan blade and flow field of airfoil at the radial 45 mm section of blade 1 and blade 2

    图 20  各外形涵道风扇桨盘前5 mm处轴向速度分布

    Figure 20.  Axial velocity distribution at 5 mm in front of fan panel of ducted fans in different shapes

    图 21  各外形涵道风扇桨盘后5 mm处轴向速度分布

    Figure 21.  Axial velocity distribution at 5 mm behind fan panel of ducted fans in different shapes

    图 22  涵道壁圆角处和中间处剖面压力分布

    Figure 22.  Pressure distribution at the corner and the middle section of the ducted fans

    图 23  不同形状涵道阵列

    Figure 23.  Array of duct in different shapes

    图 24  3种外形涵道阵列壁面的极限流线和压力分布

    Figure 24.  Surface limit streamline and pressure distribution of the duct arrays in three shapes

    图 25  3种外形涵道风扇阵列的外表面极限流线和压力分布

    Figure 25.  Outside surface limit streamline and pressure distribution of the ducted fan arrays in three shapes

    表  1  涵道风扇静拉力CFD计算与实验测量结果

    Table  1.   CFD calculation and experimental measurement results of static tension of ducted fan

    参数CFD天平测力实验
    拉力/N34.833.6
    误差/%3.6
    下载: 导出CSV

    表  2  MRF、MSM、UNST方法计算结果

    Table  2.   Calculation results of MRF,MSM,UNST methods

    参数MRFMSMUNST
    总拉力/N16.43814.15215.592
    桨盘拉力/N13.75315.01115.861
    计算时长/h161296
    下载: 导出CSV

    表  3  不同数量网格计算结果

    Table  3.   Results of different numbers of mesh

    参数网格量/万
    660720790850930
    总拉力/N13.5413.7113.5313.9314.05
    桨盘拉力/N17.2717.4417.0817.3917.41
    总扭矩/(N·m)0.8760.8610.8630.8590.861
    下载: 导出CSV

    表  4  不同形状涵道壁阻力计算结果

    Table  4.   Calculation results of drag of duct walls in different shapes

    外形阻力/N
    r=0(方)0.57
    r=0.20.50
    r=0.40.46
    r=0.60.39
    r=0.80.39
    r=1(圆)0.36
    方转圆0.85
    下载: 导出CSV

    表  5  不同速度下各形状涵道风扇效率

    Table  5.   Efficiency of ducted fans with different shapes and different speeds

    外形η0V=0 m/s)η
    V=15 m/sV=30 m/s
    r=0(方)0.5650.1740.236
    r=0.20.5940.1750.265
    r=0.40.6120.2150.264
    r=0.60.6590.2140.254
    r=0.80.7430.2540.251
    r=1(圆)0.8800.3000.281
    方转圆0.7380.2320.160
    单独转子0.4000.1980.290
    下载: 导出CSV

    表  6  各形状涵道阵列壁面阻力计算结果

    Table  6.   Calculation results of drag of duct arrays in different shapes

    外形阻力/N
    方涵道1.735
    圆涵道1.877
    方转圆涵道2.659
    下载: 导出CSV

    表  7  V=0 m/s各外形涵道风扇阵列推进特性计算结果

    Table  7.   Calculation results of the propulsion characteristic of ducted fan arrays with various shapes at V=0 m/s

    参数方涵道圆涵道方转圆涵道
    T/N68.63490.59682.935
    Tp1/N17.31213.15514.941
    Tp2/N17.24513.11615.066
    Tp3/N16.80113.14914.877
    Ts/N17.27251.28938.049
    M/(N·m)2.9272.5662.712
    η00.5600.8430.730
    下载: 导出CSV

    表  8  V=15 m/s各外形涵道风扇阵列推进特性计算结果

    Table  8.   Calculation results of the propulsion characteristic of ducted fan arrays with various shapes at V=15 m/s

    参数方涵道圆涵道方转圆涵道
    T/N40.07155.69446.795
    Tp1/N17.45111.88213.968
    Tp2/N17.06411.96514.024
    Tp3/N17.42311.97213.949
    Ts/N−11.86719.8744.853
    M/(N·m)2.8922.4922.652
    η0.1800.2910.229
    下载: 导出CSV
  • [1] 黄俊. 分布式电推进飞机设计技术综述[J]. 航空学报,2021,42(3): 1-17. HUANG Jun. Survey on design technology of distributed electric propulsion aircraft[J]. Acta Aeronautica et Astronautica Sinica,2021,42(3): 1-17. (in Chinese
    [2] 李晓华. 涵道风扇外形参数对气动特性的影响分析[D]. 长沙: 国防科学技术大学, 2014.

    LI Xiaohua. The impact analysis of the aerodynamic characteristic on ducted fan profile parameters[D]. Changsha: National University of Defense Technology, 2014. (in Chinese)
    [3] REEL J L, BALTADJIEV N D. Using computational fluid dynamics to generate complex aerodynamic database for VTOL aircraft[R]. Atlanta, US: AIAA Applied Aerodynamics Conference, 2018.
    [4] SCHMOLLGRUBER P, DOLL C, HERMETZ J, et al. Multidisciplinary exploration of DRAGON: an ONERA hybrid electric distributed propulsion concept[R]. Reston,US: AIAA SciTech Forum, 2019.
    [5] PERRY A T,ANSELL P J,KERHO M F. Aero-propulsive and propulsor cross-coupling effects on a distributed propulsion system[J]. Journal of Aircraft,2018,55(6): 2414-2426. doi: 10.2514/1.C034861
    [6] YU D,ANSELL P J,HRISTOV G. Aero-propulsive integration effects of an over wing distributed electric propulsion system[R].AIAA 2021-0604,2021.
    [7] BENTO H F, VRIES R D, Veldhuis L L. Aerodynamic performance and interaction effects of circular and square ducted propellers[R]. Orlando, US: AIAA SciTech Forum, 2020.
    [8] 许和勇,叶正寅. 涵道螺旋桨与孤立螺旋桨气动特性的数值模拟对比[J]. 航空动力学报,2011,26(12): 2820-2825. XU Heyong,YE Zhengyin. Numerical simulation and comparison of aerodynamic characteristics between ducted and isolated propellers[J]. Journal of Aerospace Power,2011,26(12): 2820-2825. (in Chinese
    [9] 邓阳平,米百刚,张言. 涵道风扇气动特性影响因素数值计算研究[J]. 西北工业大学学报,2018,36(6): 1045-1051. DENG Yangping,MI Baigang,ZHANG Yan. Research on numerical calculation for aerodynamic characteristics analysis of ducted fan[J]. Journal of Northwestern Polytechnical University,2018,36(6): 1045-1051. (in Chinese doi: 10.3969/j.issn.1000-2758.2018.06.003
    [10] 王海鹏. 涵道螺旋桨在轴流状态的气动特性分析[D].南京: 南京航空航天大学, 2007.

    WANG Haipeng. Analysis on aerodynamic characteristics of ducted propeller in axis-symmetrical flight[D].Nanjing: Nanjing University of Aeronautics and Astronautics,2007. (in Chinese)
    [11] 苏雷. 涵道风扇气动性能研究及涵道外形参数优化分析[D]. 北京: 清华大学, 2019.

    SU Lei. Aerodynamic performance calculation of ducted fan and optimization of duct profile parameters[D].Beijing: Tsinghua University,2019.(in Chinese)
    [12] 叶坤,叶正寅,屈展. 涵道气动优化设计方法[J]. 航空动力学报,2013,28(8): 153-160. YE Kun,YE Zhengyin,QU Zhan. Aerodynamic optimization method for ducted design[J]. Journal of Aerospace Power,2013,28(8): 153-160. (in Chinese doi: 10.13224/j.cnki.jasp.2013.08.022
    [13] 张阳,周洲,郭佳豪. 分布式涵道风扇喷流对后置机翼的气动性能影响研究[J]. 航空学报,2021,42(9): 224977.1-224977.14. ZHANG Yang,ZHOU Zhou,GUO Jiahao. Distributed electric propulsion jet effects on aerodynamic performance of wing[J]. Acta Aeronautica et Astronautica Sinica,2021,42(9): 224977.1-224977.14. (in Chinese doi: 10.7527/S1000-6893.2020.24977
    [14] KIM Y H,PARK S O. Navier-Stokes simulation of un- steady rotor-airframe interaction with momentum source method[J]. International Journal of Aeronautical and Space Sciences,2009,10(2): 125-133. doi: 10.5139/IJASS.2009.10.2.125
    [15] KIM Y H,PARK S O. Unsteady momentum source method for efficient simulation of rotor aerodynamics[J]. Journal of Aircraft,2013,50(1): 324-327. doi: 10.2514/1.C031934
    [16] 郭佳豪,周洲,李旭. 一种非定常动量源法及在旋翼悬停模拟中的应用[J]. 西北工业大学学报,2020,38(3): 571-579. GUO Jiahao,ZHOU Zhou,LI Xu. An unsteady momentum source method and its application in simulation of hovering rotor[J]. Journal of Northwestern Polytechnical University,2020,38(3): 571-579. (in Chinese doi: 10.3969/j.issn.1000-2758.2020.03.015
    [17] GUNTUPALLI K, RAJAGOPALAN R G. Development of discrete blade momentum source method for rotors in an unstructured solver[R].Nashville, US: AIAA Aerospace Sciences Meeting,2012
    [18] GUNTUPALLI K. Development, validation and verification of the momentum source model for discrete rotor blades[D].Ames, US: Iowa State University, 2011.
    [19] GRUNWALD K J, GOODSON K W. Aerodynamic loads on an isolated shrouded-propeller configuration for angles of attack from −10° to 110°[R]. NASA TN D-995, 1962.
    [20] GOODSON K W, GRUNWALDK J. Aerodynamic char arteritis of a powered semi-span tilting-shrouded-propeller VTOL model in hovering and transition flight[R]. NASA TN D-981, 1962.
  • 加载中
图(27) / 表(8)
计量
  • 文章访问数:  397
  • HTML浏览量:  55
  • PDF量:  167
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-07
  • 网络出版日期:  2022-09-07

目录

    /

    返回文章
    返回