Influence and control of non-uniform flow field on longitudinal combustion instability of liquid rocket engines
-
摘要:
针对常温推进剂发动机推力室再生冷却和撞击式喷注器结构,分析了推力室身部与喷注器对接部位的流场特性,对流场均匀性进行了实验测量。结果表明:推力室身部再生冷却通道出口压力存在约0.15 MPa周向不均匀。身部出口节流显著提高局部流速,使喷注器面氧化剂湍流度和不均匀性增加,进而改变燃烧特性。通过撞击喷注单元雾化试验,获得了18 m/s的推进剂入口边界流速。基于喷注器流场均匀性,提出控制推进剂流速,降低不均匀性,进而抑制纵向高频燃烧不稳定性的控制方法。发动机热试结果表明,采用(15±1) m/s的推进剂入口流速,控制方法抑制了纵向高频燃烧不稳定性。
Abstract:The vortex instability and pressure oscillation in the flow field are one of the important reasons for the high frequency longitudinal combustion instability of liquid rocket engine. Considering the regenerative cooling channel and impinging jet injectors in the thrust chamber ofnormal temperature propellant rocket engine, the flow field of the connecting part between the thrust chamber body and the injector was analyzed, and its uniformity were measured experimentally. Results showed that the circumferential non-uniform pressure at outlet of regenerative cooling channel was about 0.15 MPa. The use of throttling at the outlet of the cylindrical section of the thrust chamber can significantly increase the local fluid velocity and the turbulence and non-uniformity of the oxidant at the injector, thereby changing the combustion characteristics. The atomization test of impact injection unit was carried out, and the propellant inlet boundary velocity of 18 m/s was obtained. Based on the flow field uniformity of the injector, a control method of suppressing the longitudinal high frequency combustion instability was proposedby controlling the propellant flow rate and reducing the non-uniformity. The engine thermal test results showed that the control method suppressed the longitudinal high frequency combustion instability of the thrust chamber at the propellant inlet flow rate of (15±1) m/s.
-
-
[1] 哈杰 D T, 里尔登 F H. 液体推进剂火箭发动机不稳定燃烧[M]. 朱宁昌, 张宝炯, 译. 北京: 国防工业出版社, 1980. [2] YANG V, ANDERSON E W. Liquid rocket enginecombustion instability[M]. Washington DC: American Institute of Aeronautics and Astronautics, 1995. [3] 张贵田. 高压补燃液氧煤油发动机[M] . 北京: 国防工业出版社, 2005. [4] ANDERSON W E, RYAN H M, SANTORO R J. Combustion instability mechanisms in liquid rocket engines using impinging jet injectors[R]. AIAA-95-2357, 1995. [5] JAMES M D, KUBAL T D, SON S F, et al. Calibration of an impinging jet injector suitable for liquid and gelled hypergolic propellants[R]. AIAA-2009-4882, 2009. [6] YANG V, KIM S I, CULICK F E C, Triggering of longitudinal pressure oscillations in combustion chambers: Ⅰ nonlinear gas dynamics[J]. Combustion Science and Technology, 1990, 72(4/5/6): 183-214. [7] WICKER J M,GREENE W D,KIM S I,et al. Triggering of longitudinal combustion instabilities in rocket motors: nonlinear combustion response[J]. Journal of Propulsion and Power,1996,12(6): 1148-1158. doi: 10.2514/3.24155 [8] OEFELEIN J C,YANG V. Comprehensive review of liquid-propellant combustion instabilities in F-1 engines[J]. Journal of Propulsion and Power,1993,9(5): 657-677. doi: 10.2514/3.23674 [9] CHIGIER N. Breakup of liquid sheets and jets[R]. AIAA-99-3640, 1999. [10] 杨尚荣,杨岸龙,李龙飞,等. 喷前压力脉动对撞击式喷嘴雾化特性的影响[J]. 推进技术,2017,38(5): 1100-1106.YANG Shangrong,YANG Anlong,LI Longfei,et al. Effects of pressure pulsation upstream of injector on impinging injector atomization[J]. Journal of Propulsion Technology,2017,38(5): 1100-1106. (in Chinese) [11] 李佳楠,雷凡培,周立新,等. 液体火箭发动机背压振荡环境下的雾化特性研究进展[J]. 推进技术,2019,40(11): 2401-2419.LI Jianan,LEI Fanpei,ZHOU Lixin,et al. Recent advances of atomization characteristics under oscillating backpressure conditions in liquid rocket engines[J]. Journal of Propulsion Technology,2019,40(11): 2401-2419. (in Chinese) [12] 汪广旭,郭灿琳,石晓波,等. 基于时滞模型的纵向燃烧不稳定性分析[J]. 推进技术,2016,37(6): 1129-1135.WANG Guangxu,GUO Canlin,SHI Xiaobo,et al. Analysis of longitudinal combustion instability based on time lag mode[J]. Journal of Propulsion Technology,2016,37(6): 1129-1135. (in Chinese) [13] 张澄宇,李磊,孙晓峰. 加力燃烧室热声振荡纵向传播特性及控制[J]. 航空动力学报,2010,25(2): 278-283.ZHANG Chengyu,LI Lei,SUN Xiaofeng. Thermoacoustic oscillating calculation of longitudinal equivalence frequency and stability in aeroengine afterburner[J]. Journal of Aerospace Power,2010,25(2): 278-283. (in Chinese) [14] SOHN C H,SEOL W S,ALEXANDER A,et al. Hot-fire injector test for determination of combustion stability boundaries using model chamber[J]. Journal of Mechanical Science and Technology,2005,19(9): 1821-1832. doi: 10.1007/BF02984194 [15] FRENDI A, NESMAN T, CANABAL F. Control of combustion-instabilities through various passivedevices[R]. AIAA-2005-2832, 2005. [16] 樊晓波,王敏庆,盛美萍. 隔板应用于发动机燃烧室不稳定燃烧抑制中的二维数值计算分析[J]. 机械科学与技术,2007,26(9): 1118-1121. doi: 10.3321/j.issn:1003-8728.2007.09.006FAN Xiaobo,WANGMinqing,SHENGMeiping. Two-dimensional numerical analysis of applying baffles to restraining the combustion instability in a marine engine[J]. Mechanical Science and Technology forAerospace Engineering,2007,26(9): 1118-1121. (in Chinese) doi: 10.3321/j.issn:1003-8728.2007.09.006 [17] 李龙飞,陈建华,刘战国. 大推力液氧煤油补燃发动机高频燃烧不稳定性的控制方法[J]. 导弹与航天运载技术,2011(3): 16-19. doi: 10.3969/j.issn.1004-7182.2011.03.004LI Longfei,CHEN Jianhua,LIU Zhanguo. Control techniques of high frequency combustion instability for high thrust lox/kerosene staged combustion cycle engine[J]. Missiles and Space Vehicles,2011(3): 16-19. (in Chinese) doi: 10.3969/j.issn.1004-7182.2011.03.004 [18] HUZEL D K, HUANG D H. Modern engineering for design of liquid-propellant rocket engines[M]. Washington DC: American Institute of Aeronautics and Astronautics, 1992: 114-184. -