留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

液体火箭发动机供应系统频率特性

董蒙 谭永华 邢理想 徐浩海 李鹏飞

董蒙, 谭永华, 邢理想, 等. 液体火箭发动机供应系统频率特性[J]. 航空动力学报, 2023, 38(1):230-239 doi: 10.13224/j.cnki.jasp.20210363
引用本文: 董蒙, 谭永华, 邢理想, 等. 液体火箭发动机供应系统频率特性[J]. 航空动力学报, 2023, 38(1):230-239 doi: 10.13224/j.cnki.jasp.20210363
DONG Meng, TAN Yonghua, XING Lixiang, et al. Frequency characteristics of liquid rocket engine feed system[J]. Journal of Aerospace Power, 2023, 38(1):230-239 doi: 10.13224/j.cnki.jasp.20210363
Citation: DONG Meng, TAN Yonghua, XING Lixiang, et al. Frequency characteristics of liquid rocket engine feed system[J]. Journal of Aerospace Power, 2023, 38(1):230-239 doi: 10.13224/j.cnki.jasp.20210363

液体火箭发动机供应系统频率特性

doi: 10.13224/j.cnki.jasp.20210363
详细信息
    作者简介:

    董蒙(1993-),女,博士生,主要从事液体火箭发动机系统设计

  • 中图分类号: V434

Frequency characteristics of liquid rocket engine feed system

  • 摘要:

    为了研究减少液体火箭发动机供应系统振荡的有效工程措施,对模型系统与真实系统建立适用于中高频分析的线性化复频域传递函数矩阵模型,结合节流圈阻抗与管路特征阻抗对比方法,分析系统流路在出口压力激励下的频率特性。结果表明:激励源端可能产生谐振频率偏移效应,应选取非激励源端的幅频响应来判断系统谐振频率;节流圈具有较强的频率选择性和对表现出反谐振特征的系统具有位置选择性,需重视关注的频率与位置;节流圈位置越靠近流量振型波腹,或流量波腹位置处的节流圈压降越大,对流路中振荡衰减作用越大。针对该液体火箭发动机供应系统,缩短液氧路管长0.1 m,增大煤油路管长0.05 m,并调整节流圈压降分配,可有效减小供应系统振荡。

     

  • 图 1  液体火箭发动机供应系统(真实系统)

    Figure 1.  Liquid rocket engine feed system (real system)

    图 2  三级节流圈管路系统(模型系统)

    Figure 2.  Piping system with three-stage orifices (model system)

    图 3  三级节流圈管路系统三维流量振型(ZR2 < ZCZR3 < ZC

    Figure 3.  Three-dimensional mass flow vibration mode of the three-stage throttle orifices pipeline system (Zr2 < ZCZR3 < ZC

    图 4  三级节流圈管路系统三维流量振型(ZR2 < ZCZR3 > ZC

    Figure 4.  Three-dimensional mass flow vibration mode of the three-stage throttle orifices pipeline system (ZR2 < ZCZR3 > ZC

    图 5  三级节流圈管路系统三维流量振型(ZR2 > ZCZR3 > ZC

    Figure 5.  Three-dimensional mass flow vibration mode of the three-stage throttle orifices pipeline system (ZR2 > ZCZR3 > ZC

    图 6  2阶流量振型(ZR2 < ZCZR3 > ZC,2阶谐振频率为187.5 Hz)

    Figure 6.  Second-order mass flow vibration mode (ZR2 < ZCZR3 > ZC, 2nd order resonance frequency of 187.5 Hz)

    图 7  节流圈位置对入口流量响应特性的影响(ZR2 < ZCZR3 > ZC

    Figure 7.  Influence of throttle position on inlet flow response characteristics (ZR2 < ZCZR3 > ZC

    图 8  节流圈位置对出口流量响应特性的影响(ZR2 < ZCZR3 > ZC

    Figure 8.  Influence of throttle position on outlet mass flow response characteristics(ZR2 < ZC, ZR3 > ZC

    图 9  节流圈压降对入口流量响应特性的影响

    Figure 9.  Influence of throttle pressure drop on inlet flow response characteristics

    图 10  节流圈压降对出口流量响应特性的影响

    Figure 10.  Influence of throttle pressure drop on outlet mass flow response characteristics

    图 11  频率为500 Hz下流路中流量响应特性

    Figure 11.  Mass flow response characteristics in the flow path at frequency of 500 Hz

    图 12  并联通道

    Figure 12.  Parallel channels

    图 13  简化前后液氧路出口流量响应特性对比

    Figure 13.  Comparison of outlet mass flow response characteristics in liquid oxygen flow path between simplified and un-simplified system

    图 14  简化前后煤油路出口流量响应特性对比

    Figure 14.  Comparison of outlet mass flow response characteristics in kerosene flow path between simplified and un-simplified system

    图 15  简化系统470 Hz下液氧流量振型

    Figure 15.  Liquid oxygen mass flow vibration mode at 470 Hz for simplified system

    图 16  简化系统470 Hz下煤油流量振型

    Figure 16.  Kerosene mass flow vibration mode at 470 Hz for simplified system

    图 17  节流圈位置对频率特性的影响

    Figure 17.  Influence of throttle orifice position on frequency characteristics

    图 18  压降分配对频率特性的影响

    Figure 18.  Influence of pressure drop distribution on frequency characteristics

    表  1  不同压降分配情况下的阻抗值

    Table  1.   Impedance value under different pressure drop distributions

    流路工况ZC/106 (m−1∙s−1ZR1/106 (m−1∙s−1ZR2/106 (m−1∙s−1ZR3/106 (m−1·s−1
    液氧路10.4470.1610.6380.076
    20.4470.3520.4470.076
    30.4470.6060.1930.076
    煤油路14.2978.26625.3765.434
    24.29716.93616.7055.434
    34.29725.6078.0355.433
    下载: 导出CSV
  • [1] 刘上,刘红军,陈建华,等. 富氧燃气发生器-供应系统耦合稳定性研究[J]. 推进技术,2013,34(11): 1448-1458.

    LIU Shang,LIU Hongjun,CHEN Jianhua,et al. Investigation on oxidizer-rich preburner feed system coupled stability[J]. Journal of Propulsion Technology,2013,34(11): 1448-1458. (in Chinese)
    [2] 陈文,邢理想,徐浩海,等. 深度节流补燃循环发动机系统稳定性研究[J]. 火箭推进,2020,46(3): 41-48. doi: 10.3969/j.issn.1672-9374.2020.03.006

    CHEN Wen,XING Lixiang,XU Haohai,et al. Study on system stability of deep-throttling staged combustion cycled engine[J]. Jounal of Rocket Propulsion,2020,46(3): 41-48. (in Chinese) doi: 10.3969/j.issn.1672-9374.2020.03.006
    [3] YOO J,YOON N,LEE S,et al. Pogo analysis for a clustered rocket engine by sophisticated branch-pipe modeling[R]. AIAA 2021-1614,2021.
    [4] SEKITA R,MATSUDA M,NAKAMURA R. Pressure oscillation analyses of the pressure regulator for the H-IIA propulsion system[R]. AIAA 2003-4600,2003.
    [5] 富庆飞,贾伯琦,杨立军,等. 燃烧室压力振荡对液-液同轴离心喷嘴混合比的影响[J]. 航空动力学报,2020,35(2): 294-297.

    FU Qingfei,JIA Boqi,YANG Lijun,et al. Effect of combustion chamber pressure pulsation on mixing ratio of liquid-liquid coaxial swirl injector[J]. Journal of Aerospace Power,2020,35(2): 294-297. (in Chinese)
    [6] NATANZON M S,CULICK F E C. Combustion instability[M]. Washington DC: American Institute of Aeronautics and Astronautics Incorporation,1999.
    [7] LEONARDI M,DI M F,STEELANT J,et al.System analysis of low frequency combustion instabilities in liquid rocket engines[R].AIAA 2015-4208,2015.
    [8] 刘上,张兴军,程晓辉,等. 火箭发动机泵后供应系统水力激振试验[J]. 航空动力学报,2018,33(11): 2635-2643.

    LIU Shang,ZHANG Xingjun,CHENG Xiaohui,et al. Hydraulic vibration experiment on a rocket engine feed system after pump[J]. Journal of Aerospace Power,2018,33(11): 2635-2643. (in Chinese)
    [9] 刘上,张兴军,程晓辉,等. 发动机泵后管路-汽蚀管系统水力激振试验[J]. 航空动力学报,2018,33(12): 3057-3064.

    LIU Shang,ZHANG Xingjun,CHENG Xiaohui,et al. Experiment for hydraulic vibration on rocket engine feed pipe-venturi tube system after pump[J]. Journal of Aerospace Power,2018,33(12): 3057-3064. (in Chinese)
    [10] WYLIE E B,STREETER V L. Fluid transients in systems[M]. Upper Saddle River,US: Prentice Hall,1993.
    [11] 刘曌俞. 液体火箭发动机喷注系统动力学特性研究[D]. 北京: 中国航天科技集团公司第一研究院,2018.

    LIU Zhaoyu. Research on the dynamic characteristic of injecting system in liquid rocket engine[D]. Beijing: the First Academy of China Aerospace Science and Technology Corporation,2018. (in Chinese)
    [12] SUTTON G P,BIBLARZ O. Rocket propulsion elements[M].9th ed. Hoboken, US: John Wiley and Sons Incorporation,2017.
    [13] 汪洪波,吴海燕,谭建国. 推进系统动力学[M]. 北京: 科学出版社,2018.
    [14] HITT M,LINEBERRY D,AHUJA V,et al. Experimental investigation of cavitation induced feedline instability from an orifice[R]. AIAA 2012-4029,2012.
    [15] AI Wanzheng,ZHOU Qi. Hydraulic characteristics of multi-stage orifice plate[J]. Journal of Shanghai Jiaotong University (Science),2014,19(3): 361-366. doi: 10.1007/s12204-014-1510-x
    [16] HARRJE D T,REARDON F H. Liquid propellant rocket combustion instability[M]. NASA SP-194,1972.
    [17] 刘上,刘红军,孙宏明,等. 液体火箭发动机中频耦合振荡初步研究[J]. 推进技术,2013,34(1): 101-108. doi: 10.13675/j.cnki.tjjs.2013.01.020

    LIU Shang,LIU Hongjun,SUN Hongming,et al. Preliminary study of medium frequency coupled oscillation in liquid rocket engine[J]. Journal of Propulsion Technology,2013,34(1): 101-108. (in Chinese) doi: 10.13675/j.cnki.tjjs.2013.01.020
    [18] KOBAYASHI K,NUNOME Y,TOMITA T,et al. Studies on injection-coupled instability for liquid propellant rocket engines[R]. AIAA 2015-3843,2015.
    [19] BAZAROV V G. 液体喷嘴动力学[M]. 任汉芬,孙纪国,译.北京: 航天工业总公司第11研究所,1997.
    [20] FU Q,YANG L,WANG X. Theoretical and experimental study of the dynamics of a liquid swirl injector[J]. Journal of Propulsion and Power,2010,26(1): 94-101. doi: 10.2514/1.44271
  • 加载中
图(18) / 表(1)
计量
  • 文章访问数:  198
  • HTML浏览量:  66
  • PDF量:  59
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-12
  • 网络出版日期:  2022-09-07

目录

    /

    返回文章
    返回