留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于EWT-熵值方法的发动机风扇叶片损伤监控

徐建新 赵树杰 马超 巴翔

徐建新, 赵树杰, 马超, 等. 基于EWT-熵值方法的发动机风扇叶片损伤监控[J]. 航空动力学报, 2023, 38(1):23-31 doi: 10.13224/j.cnki.jasp.20210365
引用本文: 徐建新, 赵树杰, 马超, 等. 基于EWT-熵值方法的发动机风扇叶片损伤监控[J]. 航空动力学报, 2023, 38(1):23-31 doi: 10.13224/j.cnki.jasp.20210365
XU Jianxin, ZHAO Shujie, MA Chao, et al. Damage monitoring of engine fan blades based on EWT-entropy method[J]. Journal of Aerospace Power, 2023, 38(1):23-31 doi: 10.13224/j.cnki.jasp.20210365
Citation: XU Jianxin, ZHAO Shujie, MA Chao, et al. Damage monitoring of engine fan blades based on EWT-entropy method[J]. Journal of Aerospace Power, 2023, 38(1):23-31 doi: 10.13224/j.cnki.jasp.20210365

基于EWT-熵值方法的发动机风扇叶片损伤监控

doi: 10.13224/j.cnki.jasp.20210365
基金项目: 波音基金技术挑战项目(20200618073)
详细信息
    作者简介:

    徐建新(1967-),男,教授,博士,主要从事飞机、发动机的运维技术研究

    通讯作者:

    赵树杰(1996-),男,硕士,主要从事航空发动机故障诊断研究。E-mail:254202828@qq.com

  • 中图分类号: V231.92

Damage monitoring of engine fan blades based on EWT-entropy method

  • 摘要:

    为了从发动机性能数据中寻找风扇叶片外来物损伤航班特征,从而将风扇叶片受外来物损伤的航班区分出来,在机载快速存储记录器(quick access recorder, QAR)数据检测中提出将经验小波分解和信息熵结合的方法。通过对各航班原始振动数据的拟合平滑处理和经验小波分解,提取了分解后各模态的能量熵和,分析了添加汉明(Hanmming)窗函数的多尺度熵,结果表明:拟合后数据的熵值变化更明显,且风扇叶片受外来物损伤航班的能量熵和有10%以上的降低趋势,改进后的多尺度熵有40%以上的增长趋势,均明显异于其他正常航班。证明采用EWT-熵值方法可以较好地对发动机风扇叶片外来物损伤情况进行监控。

     

  • 图 1  C飞机右发正常航班振动图像拟合

    Figure 1.  Image fitting of vibration of C aircraft flight with normal right engine

    图 2  A飞机连续28个航班EWT能量熵和

    Figure 2.  EWT with the sum of energy entropies of 28 consecutive flights of A aircraft

    图 3  B飞机双发连续26个航班EWT能量熵和

    Figure 3.  EWT with the sum of energy entropies of 26 consecutive flights of B aircraft twin-engine

    图 4  C飞机双发连续26个航班EWT能量熵和

    Figure 4.  EWT with the sum of energy entropies of 26 consecutive flights of C aircraft twin-engine

    图 5  MSE粗粒化构造方式

    Figure 5.  MSE coarse-grained structure

    图 6  A飞机28个航班IMF16 HMSE

    Figure 6.  IMF16 HMSE of 28 flights of A aircraft

    图 7  A飞机28个航班IMF1 HMSE

    Figure 7.  IMF1 HMSE of 28 flights of A aircraft

    图 8  A飞机28个航班IMF2 HMSE

    Figure 8.  IMF2 HMSE of 28 flights of A aircraft

    图 9  A飞机FOD航班保留模态均方误差

    Figure 9.  Retained modal mean square error of A aircraft FOD flight

    图 10  B飞机FOD航班特征验证

    Figure 10.  Verification of flight characteristics of B aircraft FOD

    图 11  C飞机FOD航班特征验证

    Figure 11.  Verification of flight characteristics of C aircraft FOD

    表  1  部分FOD损伤描述

    Table  1.   Part of FOD damage description

    飞机编号损伤发现日期故障描述
    A2019年
    12月18日
    左发4号叶片距叶尖3 mm位置有一豁口,长度约为4.14 mm,深度为不到1 mm,做记录
    B2020年
    1月8日
    右发3号叶片前缘距叶尖27.4 cm位置有一长度为3 mm、深度为不到1 mm缺口,航后拆下叶片交金工已完成打磨和探伤
    C2019年
    8月16日
    航后检查发现右发12号叶片叶尖有一处缺口,深度为0.79 mm,长度为4.7 mm,手册标准深度不超过1 mm,按手册检查不超标,留作记录
    下载: 导出CSV

    表  2  损伤航班能量熵和变化比例统计

    Table  2.   Statistics of the sum of energy entropies of damage flight and change ratio

    飞机能量熵和均值/nat损伤航班能量熵和/nat降低比例/%
    A0.674640.58165413.78
    0.23513465.15
    B0.6124140.54121611.63
    0.5531739.67
    0.52367614.49
    C0.2350010.1482836.90
    0.17741924.50
    0.14415438.66
    0.16222230.97
    下载: 导出CSV

    表  3  A飞机部分模态MSE与HMSE标准差

    Table  3.   Standard deviation of A aircraft partial modal MSE and HMSE

    内涵模态标准差/nat
    MSEHMSE
    IMF10.029360.02034
    IMF20.0446580.04717
    $\vdots $$\vdots $$\vdots $
    IMF170.14910.126287
    IMF180.1284970.111078
    IMF190.1385150.116193
    下载: 导出CSV

    表  4  A飞机20个内涵模态28个航班决定系数均值

    Table  4.   Average value of determination coefficient of 28 flights for 20 intrinsic mode functions of A aircraft

    内涵模态$ {R^2} $均值/nat内涵模态$ {R^2} $均值/nat
    IMF10.8962262IMF110.2035216
    IMF20.7579664IMF120.3174590
    IMF30.8224329IMF130.2056715
    IMF40.8420283IMF140.0511563
    IMF50.6808552IMF15−0.2335838
    IMF60.5581359IMF16−0.13266203
    IMF70.6555249IMF17−0.86031928
    IMF80.3090201IMF18−0.46340345
    IMF90.3602505IMF19−0.59026271
    IMF100.3678542IMF200.7740957
    下载: 导出CSV

    表  5  B和C飞机部分内涵模态决定系数均值

    Table  5.   Average value of determination coefficient for the partial intrinsic mode functions of B and C aircraft

    飞机保留模态$ {R^2} $均值/nat
    BIMF220.6539462
    CIMF80.7409416
    下载: 导出CSV

    表  6  异常航班的样本熵增长比例

    Table  6.   Sample entropy growth ratio of abnormal flight

    飞机异常
    保留模态
    异常
    尺度因子
    样本
    熵均值/nat
    异常航班
    样本熵/nat
    增长
    比例/%
    AIMF210.02710.0872221.74
    20.00350.005658.58
    30.03480.1065206.44
    40.05180.1695227.38
    50.06960.2405245.55
    60.08790.3079250.28
    70.10700.3729248.50
    80.12580.4125227.90
    90.14520.4463207.37
    100.16480.4694184.83
    110.18490.4850162.30
    120.20550.5149150.56
    130.22610.5425139.94
    140.24410.5417121.92
    150.25990.5355106.04
    160.27620.514786.35
    170.29010.555891.58
    180.30050.490763.29
    190.30850.465850.98
    200.32100.517361.15
    BIMF2230.50360.840566.89
    40.50210.890477.33
    50.50840.809659.24
    60.53050.801551.08
    70.56670.808042.57
    80.55690.805744.69
    90.51330.811858.16
    100.43680.770376.35
    110.38060.672876.77
    120.33530.7218115.26
    130.28580.7047146.57
    140.23420.6081159.64
    150.19220.5027161.55
    160.14720.4507206.18
    170.12220.4596276.10
    180.09490.3546273.65
    190.06550.2145227.48
    200.05880.1959233.16
    CIMF8130.25830.375745.45
    140.23470.442088.32
    150.21840.369769.27
    160.21520.4321100.78
    170.20690.4966140.01
    180.21370.5028135.33
    190.21920.5288141.21
    200.23230.4648100.06
    下载: 导出CSV
  • [1] 马超,王玉娜,武耀罡,等. 航空发动机风扇叶片硬物冲击损伤特征[J]. 航空动力学报,2017,32(4): 1105-1111.

    MA Chao,WANG Yuna,WU Yaogang,et al. Hard object impact damage characteristics of aero engine fan blade[J]. Journal of Aerospace Power,2017,32(4): 1105-1111. (in Chinese)
    [2] 赵烨. 基于卷积神经网络的叶片损伤识别方法研究[D]. 天津: 中国民航大学, 2019.

    ZHAO Ye. Research on blade damage identification method based on convolution neural network[D]. Tianjin: Civil Aviation University of China, 2019. (in Chinese)
    [3] 张维亮. 航空发动机叶片损伤图像快速识别技术研究[D]. 辽宁: 沈阳航空航天大学, 2014.

    ZHANG Weiliang. Research on technologies of aero-engine blades damage image fast recognition[D]. Liaoning: Shenyang Aerospace University, 2014. (in Chinese)
    [4] 程弓. 基于谱聚类算法的航空发动机故障诊断[D]. 上海: 上海交通大学, 2018.

    CHENG Gong. Aero-engine fault diagnosis based on spectral clustering algorithm[D]. Shanghai: Shanghai Jiao Tong University, 2018. (in Chinese)
    [5] 林敏. 极限学习机在航空发动机气路故障诊断中的应用[D]. 上海: 上海交通大学, 2015.

    LIN Min. Application of extreme learning machine in aero-engine gas path fault diagnosis[D]. Shanghai: Shanghai Jiao Tong University, 2015. (in Chinese)
    [6] 张强波,雷晓波. 风扇叶片外物撞击瞬间转子振动响应分析[J]. 科学技术与工程,2020,20(6): 2483-2488. doi: 10.3969/j.issn.1671-1815.2020.06.054

    ZHANG Qiangbo,LEI Xiaobo. Analysis of rotor vibration transient response of fan blade impact[J]. Science Technology and Engineering,2020,20(6): 2483-2488. (in Chinese) doi: 10.3969/j.issn.1671-1815.2020.06.054
    [7] 舒畅,程铭,许煜,等. 不同金属硬物冲击航空发动机叶片损伤研究[J]. 航空动力学报,2020,35(1): 18-29. doi: 10.13224/j.cnki.jasp.2020.01.003

    SHU Chang,CHENG Ming,XU Yu,et al. Research on damage of aero-engine blades impacted by different metal hard objects[J]. Journal of Aerospace Power,2020,35(1): 18-29. (in Chinese) doi: 10.13224/j.cnki.jasp.2020.01.003
    [8] SHARMA V,RAGHUWANSHI N K,JAIN A K. Sensitive sub-band selection criteria for empirical wavelet transform to detect bearing fault based on vibration signals[J]. Journal of Vibration Engineering and Technologies,2021,9(7): 1-15.
    [9] IMAOUCHEN Y,KEDADOUCHE M,ALKAMA R,et al. A frequency-weighted energy operator and complementary ensemble empirical mode decomposition for bearing fault detection[J]. Mechanical Systems and Signal Processing,2017,82: 103-116. doi: 10.1016/j.ymssp.2016.05.009
    [10] 余志锋,熊邦书,熊天旸,等. 基于VMD-CWT和改进CNN的直升机轴承故障诊断[J]. 航空动力学报,2021,36(5): 948-958. doi: 10.13224/j.cnki.jasp.2021.05.006

    YU Zhifeng,XIONG Bangshu,XIONG Tianyang,et al. Fault diagnosis of helicopter bearing based on VMD-CWT and improved CNN[J]. Journal of Aerospace Power,2021,36(5): 948-958. (in Chinese) doi: 10.13224/j.cnki.jasp.2021.05.006
    [11] 陈国焉. 浅谈涡扇发动机故障的QAR数据分析[J]. 航空维修与工程,2012(2): 44-46. doi: 10.3969/j.issn.1672-0989.2012.02.011

    CHEN Guoyan. QAR data analysis of turbofan engine[J]. Aviation Maintenance and Engineering,2012(2): 44-46. (in Chinese) doi: 10.3969/j.issn.1672-0989.2012.02.011
    [12] 徐建新,姜春生,马超. 基于ARIMA模型的民用航空发动机低压转子振动故障分析[J]. 科学技术与工程,2019,19(19): 362-368.

    XU Jianxin,JIANG Chunsheng,MA Chao. Vibration fault analysis of low pressure rotor of civil aero-engine based on ARIMA model[J]. Science Technology and Engineering,2019,19(19): 362-368. (in Chinese)
    [13] 李扬. 平滑样条回归模型变点估计[D]. 贵阳: 贵州大学, 2020.

    LI Yang. Change point estimation of smoothing spline regression model[D]. Guiyang: Guizhou University, 2020. (in Chinese)
    [14] 赵阳. 基于改进经验小波变换的风电机组齿轮箱故障诊断[D]. 北京: 北京交通大学, 2020.

    ZHAO Yang. Fault diagnosis of wind turbine gearbox based on improved empirical wavelet transform[D]. Beijing: Beijing Jiaotong University, 2020. (in Chinese)
    [15] 王莹. 基于成分分解的自适应滤波降噪方法研究[D]. 哈尔滨: 哈尔滨工业大学, 2017.

    WANG Ying. Research on denoising method of adaptive filter based on component decomposition[D]. Harbin: Harbin Institute of Technology, 2017. (in Chinese)
    [16] 鲁铁定,黄佳伟,鲁春阳,等. 基于EWT- ARMA的短期电离层TEC预测模型[J]. 大地测量与地球动力学,2021,41(4): 331-335,341.

    LU Tieding,HUANG Jiawei,LU Chunyang,et al. Short-term ionospheric TEC prediction model based on EWT-ARMA[J]. Journal of Geodesy and Geodynamics,2021,41(4): 331-335,341. (in Chinese)
    [17] 周静雷,颜婷. 应用变分模态分解及能量熵的扬声器异常声分类[J]. 声学学报,2021,46(2): 263-270.

    ZHOU Jinglei,YAN Ting. Loudspeaker abnormal sound classification using variational modal decomposition and energy entropy[J]. Acta Acustica,2021,46(2): 263-270. (in Chinese)
    [18] 赵振华,张钧贺,王凌峰,等. 钛合金叶片前缘的外物损伤残余应力数值分析[J]. 航空动力学报,2020,35(11): 2284-2292.

    ZHAO Zhenhua,ZHANG Junhe,WANG Lingfeng,et al. Numerical analysis on residual stress of foreign object damage on the leading edge of titanium alloy blade[J]. Journal of Aerospace Power,2020,35(11): 2284-2292. (in Chinese)
    [19] 张海姣. 基于熵理论的滚动轴承故障诊断方法研究[D]. 合肥: 安徽大学, 2019.

    ZHANG Haijiao. Research on fault diagnosis method of rolling bearing based on entropy theory[D]. Hefei: Anhui University, 2019. (in Chinese)
    [20] 黄寒华. 关于滑动DFT算法中的频谱泄漏问题的探讨[J]. 现代电子技术,2007(24): 202-204. doi: 10.3969/j.issn.1004-373X.2007.24.071

    HUANG Hanhua. An exploration of the sliding DFT spectral leakage[J]. Modern Electronics Technique,2007(24): 202-204. (in Chinese) doi: 10.3969/j.issn.1004-373X.2007.24.071
    [21] 常峥,罗萍,杨波,等. 基于HHT-MFCC和短时能量的慢性阻塞性肺病患者呼吸声识别[J]. 计算机应用,2021,41(2): 598-603. doi: 10.11772/j.issn.1001-9081.2020060881

    CHANG Zheng,LUO Ping,YANG Bo,et al. Respiratory sound recognition of chronic obstructive pulmonary disease patients based on HHT-MFCC and short-term energy[J]. Journal of Computer Applications,2021,41(2): 598-603. (in Chinese) doi: 10.11772/j.issn.1001-9081.2020060881
    [22] 陈书炎. 基于改进多尺度样本熵与参数优化支持向量机的滚动轴承故障诊断研究[D]. 镇江: 江苏大学, 2020.

    CHEN Shuyan. Study on rolling bearing fault diagnosis using improved multiscale sample entropy and parameters optimization SVM[D]. Zhenjiang: Jiangsu University, 2020. (in Chinese)
  • 加载中
图(11) / 表(6)
计量
  • 文章访问数:  181
  • HTML浏览量:  21
  • PDF量:  69
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-12
  • 网络出版日期:  2022-10-13

目录

    /

    返回文章
    返回