留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于特征时间模型的高效喷雾燃烧数值模拟

尹钰 杨天威 周华 任祝寅 林宏军 尚守堂

尹钰, 杨天威, 周华, 等. 基于特征时间模型的高效喷雾燃烧数值模拟[J]. 航空动力学报, 2023, 38(1):104-115 doi: 10.13224/j.cnki.jasp.20210366
引用本文: 尹钰, 杨天威, 周华, 等. 基于特征时间模型的高效喷雾燃烧数值模拟[J]. 航空动力学报, 2023, 38(1):104-115 doi: 10.13224/j.cnki.jasp.20210366
YIN Yu, YANG Tianwei, ZHOU Hua, et al. Efficient spray combustion simulations using the characteristic timescale model[J]. Journal of Aerospace Power, 2023, 38(1):104-115 doi: 10.13224/j.cnki.jasp.20210366
Citation: YIN Yu, YANG Tianwei, ZHOU Hua, et al. Efficient spray combustion simulations using the characteristic timescale model[J]. Journal of Aerospace Power, 2023, 38(1):104-115 doi: 10.13224/j.cnki.jasp.20210366

基于特征时间模型的高效喷雾燃烧数值模拟

doi: 10.13224/j.cnki.jasp.20210366
基金项目: 国家自然科学基金(91841302);国家科技重大专项(2017- Ⅰ -0004-0005)
详细信息
    作者简介:

    尹钰(1994-),女,博士生,主要从事湍流燃烧研究

    通讯作者:

    任祝寅(1978-),男,教授、博士生导师,博士,主要从事湍流燃烧研究。E-mail: zhuyinren@mail.tsinghua.edu.cn

  • 中图分类号: V231.2

Efficient spray combustion simulations using the characteristic timescale model

  • 摘要:

    开展了基于特征时间(CTS)燃烧模型的高效喷雾燃烧数值模拟研究。基于CTS模型与层流有限速率燃烧模型对CFM56航空发动机模型燃烧室进行了两相数值模拟,通过比较预测的火焰结构验证了CTS燃烧模型在喷雾燃烧中的适用性。通过采用CTS模型初始化燃烧场来提高有限速率燃烧模型的数值模拟效率,提出了基于CTS燃烧模型结合降维方法的高效数值模拟方法。结果表明:CTS燃烧模型较好预测了CFM56模型燃烧室的火焰形态和组分分布,可为有限速率燃烧模型的数值模拟提供良好的初始解;采用自适应建表(ISAT)方法可减小计算时间90%,在此基础上,基于CTS模型初始化的稳态算例收敛时间减少35%,进一步结合降维方法收敛时间减少40%,证明了CTS模型具有提高喷雾燃烧数值模拟效率的潜力。

     

  • 图 1  层流火焰传播速度和温度峰值随当量比的变化

    Figure 1.  Laminar propagation flame speed and the maximum temperature as a function of the equivalence ratio from the freely propagating premixed flames

    图 2  组分最大质量分数随当量比的变化

    Figure 2.  The maximum mass fraction of species as a function of the equivalence ratio from the freely propagating premixed flames

    图 3  不同$ {c}_{\mathrm{c}\mathrm{h}\mathrm{e}\mathrm{m}} $的特征时间燃烧模型的平均温度云图

    Figure 3.  Contours of mean temperature from CTS model with different $ {c}_{\mathrm{c}\mathrm{h}\mathrm{e}\mathrm{m}} $

    图 4  不同$ {c}_{\mathrm{c}\mathrm{h}\mathrm{e}\mathrm{m}} $的特征时间燃烧模型的出口径向位置平均温度比较

    Figure 4.  Comparison of temperature profiles at the exit plane from CTS model with different $ {c}_{\mathrm{c}\mathrm{h}\mathrm{e}\mathrm{m}} $

    图 5  特征时间燃烧模型和有限速率燃烧模型的混合分数云图

    Figure 5.  Contours of mean mixture fraction from CTS and LFR model

    图 6  特征时间燃烧模型和有限速率燃烧模型的平均温度云图

    Figure 6.  Contours of mean temperature from CTS and LFR model

    图 7  特征时间燃烧模型和有限速率燃烧模型的CO平均质量分数云图

    Figure 7.  Contours of mean CO mass fraction from CTS and LFR model

    图 8  特征时间燃烧模型和有限速率燃烧模型的OH平均质量分数云图

    Figure 8.  Contours of mean OH mass fraction from CTS and LFR model

    图 9  特征时间燃烧模型和有限速率燃烧模型的平均温度在混合分数空间的散点图

    Figure 9.  Scatter plot of mean temperature versus mixture fraction from CTS and LFR model

    图 10  特征时间燃烧模型和有限速率燃烧模型的CO平均质量分数在混合分数空间的散点图

    Figure 10.  Scatter plot of mean CO mass fraction versus mixture fraction from CTS and LFR model

    图 11  特征时间燃烧模型和有限速率燃烧模型的OH平均质量分数在混合分数空间的散点图

    Figure 11.  Scatter plot of mean OH mass fraction versus mixture fraction from CTS and LFR model

    图 12  特征时间燃烧模型、有限速率燃烧模型和降维的特征时间燃烧模型的出口径向位置平均温度比较

    Figure 12.  Comparison of temperature profiles at the exit plane from CTS, LFR and reduced CTS model

    表  1  物理模型和数值格式

    Table  1.   Physical models and numerical settings

    物理模型和数值格式说 明
    求解器基于压力的稳态求解器
    湍流模型Realizable $k\text{-}\varepsilon$ 湍流模型
    离散格式采用semi-implicit method for pressure linked equation(SIMPLE)算法对压力-速度进行耦合求解,采用标准2阶离散格式对压力进行离散,采用2阶迎风格式离散动量、组分和湍动能
    DPM模型采用球形阻力定律计算颗粒受到的阻力,采用随机游动方法计算湍流弥散的影响,采用Abramzon-Sirignano模型对蒸发建模,采用Ranz-Marshall方法对传热建模
    下载: 导出CSV

    表  2  出口温度分布系数(${{\boldsymbol{\delta}} }_{\bf{m}}$)和径向温度分布系数(${{\boldsymbol{\delta}} }_{\bf{r}}$)随${{\boldsymbol{c}}}_{\bf{chem}}$的变化

    Table  2.   Variations of ${\boldsymbol{\delta }}_{\bf{m}}$ and ${\boldsymbol{\delta }}_{\bf{r}}$ with ${\boldsymbol{c}}_{\bf{chem}}$

    参 数$ {c}_{\mathrm{c}\mathrm{h}\mathrm{e}\mathrm{m}} $=0$ {c}_{\mathrm{c}\mathrm{h}\mathrm{e}\mathrm{m}} $=1$ {c}_{\mathrm{c}\mathrm{h}\mathrm{e}\mathrm{m}} $=100
    出口温度分布系数0.23470.26540.2367
    径向温度分布系数0.16760.16920.1669
    下载: 导出CSV

    表  3  特征时间燃烧模型、有限速率燃烧模型和降维的特征时间燃烧模型的出口温度分布系数和径向温度分布系数

    Table  3.   Variations of ${\boldsymbol{\delta }}_{\bf{m}}$ and ${\boldsymbol{\delta }}_{\bf{r}}$ with CTS, LFR and reduced CTS model

    参数CTSLFR降维的CTS
    出口温度分布系数0.26540.25130.2709
    径向温度分布系数0.16920.19150.1651
    下载: 导出CSV

    表  4  特征时间燃烧模型、有限速率燃烧模型的计算效率比较

    Table  4.   Comparison of calculation efficiency of CTS and LRF model

    参数CTS
    ($ {c}_{\mathrm{c}\mathrm{h}\mathrm{e}\mathrm{m}} $=1,ISAT)
    高温初始化
    降维未降维ISAT无ISAT
    CTS迭代步数2000200000
    CTS平均每步迭代时间/s10.1715.4700
    LFR迭代步数700070001400014000
    LFR平均每步迭代时间/s14.5014.5014.50149
    总计算时间比值0.600.65110.27
    下载: 导出CSV
  • [1] MASRI A R. Turbulent combustion of sprays:from dilute to dense[J]. Combustion Science and Technology,2016,188(10): 1619-1639. doi: 10.1080/00102202.2016.1198788
    [2] HEYE C,RAMAN V,MASRI A R. Influence of spray/combustion interactions on auto-ignition of methanol spray flames[J]. Proceedings of the Combustion Institute,2015,35(2): 1639-1648. doi: 10.1016/j.proci.2014.06.087
    [3] JIANG X,SIAMAS G A,JAGUS K,et al. Physical modelling and advanced simulations of gas-liquid two-phase jet flows in atomization and sprays[J]. Progress in Energy and Combustion Science,2010,36(2): 131-167. doi: 10.1016/j.pecs.2009.09.002
    [4] JENNY P,ROEKAERTS D,BEISHUIZEN N. Modeling of turbulent dilute spray combustion[J]. Progress in Energy and Combustion Science,2012,38(6): 846-887. doi: 10.1016/j.pecs.2012.07.001
    [5] 何跃龙,邓远灏,颜应文,等. 大涡模拟模型燃烧室燃烧性能计算[J]. 航空动力学报,2012,27(9): 1939-1947. doi: 10.13224/j.cnki.jasp.2012.09.012

    HE Yuelong,DENG Yuanhao,YAN Yingwen,et al. Large-eddy simulation of two-phase reacting flows and combustion performance in model combustor[J]. Journal of Aerospace Power,2012,27(9): 1939-1947. (in Chinese) doi: 10.13224/j.cnki.jasp.2012.09.012
    [6] SPALDING D B. Development of the eddy-break-up model of turbulent combustion[J]. Symposium (International) on Combustion.Pittsburgh,1977,16(1): 1657-1663. doi: 10.1016/S0082-0784(77)80444-X
    [7] GRAN I R,MAGNUSSEN B F. A numerical study of a bluff-body stabilized diffusion flame: Part 2 influence of combustion modelling and finite-rate chemistry[J]. Combustion Science and Technology,1996,119(1/2/3/4/5/6): 191-217.
    [8] PETERS N. Laminar diffusion flamelet models in non-premixed turbulent combustion[J]. Progress in Energy and Combustion Science,1984,10(3): 319-339. doi: 10.1016/0360-1285(84)90114-X
    [9] POPE S B. PDF methods for turbulent reactive flows[J]. Progress in Energy and Combustion Science,1985,11(2): 119-192. doi: 10.1016/0360-1285(85)90002-4
    [10] WANG Q,JARAVEL T,IHME M. Assessment of spray combustion models in large-eddy simulations of a polydispersed acetone spray flame[J]. Proceedings of the Combustion Institute,2019,37(3): 3335-3344. doi: 10.1016/j.proci.2018.06.011
    [11] ECKEL G,GROHMANN J,CANTU L,et al. LES of a swirl-stabilized kerosene spray flame with a multi-component vaporization model and detailed chemistry[J]. Combustion and Flame,2019,207: 134-152. doi: 10.1016/j.combustflame.2019.05.011
    [12] 颜应文,宋双文,胡好生,等. 折流燃烧室两相喷雾燃烧流场数值模拟[J]. 航空动力学报,2011,26(5): 1003-1010. doi: 10.13224/j.cnki.jasp.2011.05.016

    YAN Yingwen,HE Yuelong,HU Haosheng,et al. Numerical investigations of two-phase spray combustion flow fields in slinger annular combustor[J]. Journal of Aerospace Power,2011,26(5): 1003-1010. (in Chinese) doi: 10.13224/j.cnki.jasp.2011.05.016
    [13] 徐榕,李井华,赵坚行,等. 湍流燃烧模型对双旋流燃烧室喷雾燃烧的影响[J]. 推进技术,2013,34(3): 375-382. doi: 10.13675/j.cnki.tjjs.2013.03.006

    XU Rong,LI Jinghua,ZHAO Jianxing,et al. Effects of turbulent combustion models on spray combustion flow of dual-stage swirler combustor[J]. Journal of Propulsion Technology,2013,34(3): 375-382. (in Chinese) doi: 10.13675/j.cnki.tjjs.2013.03.006
    [14] HEYE C,RAMAN V,MASRI A R. LES/probability density function approach for the simulation of an ethanol spray flame[J]. Proceedings of the Combustion Institute,2013,34(1): 1633-1641. doi: 10.1016/j.proci.2012.06.107
    [15] PEI Y,HAWKES E R,KOOK S. A comprehensive study of effects of mixing and chemical kinetic models on predictions of n-heptane jet ignitions with the PDF method[J]. Flow, Turbulence and Combustion,2013,91(2): 249-280. doi: 10.1007/s10494-013-9454-z
    [16] HONHAR P,HU Y,GUTHEIL E. Analysis of mixing models for use in simulations of turbulent spray combustion[J]. Flow, Turbulence and Combustion,2017,99(2): 511-530. doi: 10.1007/s10494-017-9815-0
    [17] LU T,LAW C K. Toward accommodating realistic fuel chemistry in large-scale computations[J]. Progress in Energy and Combustion Science,2009,35(2): 192-215. doi: 10.1016/j.pecs.2008.10.002
    [18] GOU X,SUN W,CHEN Z,et al. A dynamic multi-timescale method for combustion modeling with detailed and reduced chemical kinetic mechanisms[J]. Combustion and Flame,2010,157(6): 1111-1121. doi: 10.1016/j.combustflame.2010.02.020
    [19] GAO Y,LIU Y,REN Z,et al. A dynamic adaptive method for hybrid integration of stiff chemistry[J]. Combustion and Flame,2015,162(2): 287-295. doi: 10.1016/j.combustflame.2014.07.023
    [20] XU C,GAO Y,REN Z,et al. A sparse stiff chemistry solver based on dynamic adaptive integration for efficient combustion simulations[J]. Combustion and Flame,2016,172: 183-193. doi: 10.1016/j.combustflame.2016.07.009
    [21] GOLDIN G,REN Z,ZAHIROVIC S. A cell agglomeration algorithm for accelerating detailed chemistry in CFD[J]. Combustion Theory and Modelling,2009,13(4): 721-739. doi: 10.1080/13647830903154542
    [22] POPE S B,REN Z. Efficient implementation of chemistry in computational combustion[J]. Flow, Turbulence and Combustion,2008,82(4): 437-453.
    [23] KECK J C. Rate-controlled constrained-equilibrium theory of chemical reactions in complex systems[J]. Progress in Energy and Combustion Science,1990,16(2): 125-154. doi: 10.1016/0360-1285(90)90046-6
    [24] LIANG L,STEVENS J G,FARRELL J T. A dynamic adaptive chemistry scheme for reactive flow computations[J]. Proceedings of the Combustion Institute,2009,32(1): 527-534. doi: 10.1016/j.proci.2008.05.073
    [25] POPE S B. Computationally efficient implementation of combustion chemistry using in situ adaptive tabulation[J]. Combustion Theory and Modelling,1997,1(1): 41-63. doi: 10.1080/713665229
    [26] TONSE S R,MORIARTY N W,BROWN N J,et al. PRISM: piecewise reusable implementation of solution mapping. An economical strategy for chemical kinetics[J]. Israel Journal of Chemistry,1999,39(1): 97-106. doi: 10.1002/ijch.199900010
    [27] CHRISTO F C,MASRI A R,NEBOT E M,et al. An integrated PDF/neural network approach for simulating turbulent reacting systems[C]//Symposium (International) on Combustion. Naples, Italy: the Combustion Institute,1996:43-48.
    [28] REITZ R D,BRACCO F V. Global kinetics models and lack of thermodynamic equilibrium[J]. Combustion and Flame,1983,53(1/2/3): 141-144. doi: 10.1016/0010-2180(83)90013-5
    [29] KONG S C,HAN Z,REITZ R D. The development and application of a diesel ignition and combustion model for multidimensional engine simulation[R]. Detroit,US: International Congress and Exposition,1995.
    [30] RAO S,RUTLAND C. A flamelet time scale model for non-premixed combustion including chemical kinetic effects[J]. Combustion and Flame,2003,133(1/2): 189-191.
    [31] ABRAMZON B,SIRIGNANO W A. Droplet vaporization model for spray combustion calculations[J]. International Journal of Heat and Mass Transfer,1989,32(9): 1605-1618. doi: 10.1016/0017-9310(89)90043-4
    [32] HINZE J O. Turbulence: an introduction to its mechanism and theory[M].New York: McGraw-Hill Book Company,1959.
    [33] REN Z,GOLDIN G M. An efficient time scale model with tabulation of chemical equilibrium[J]. Combustion and Flame,2011,158(10): 1977-1979. doi: 10.1016/j.combustflame.2011.02.018
    [34] LU L,POPE S B. An improved algorithm for in situ adaptive tabulation[J]. Journal of Computational Physics,2009,228(2): 361-386. doi: 10.1016/j.jcp.2008.09.015
    [35] REN Z,GOLDIN G M,HIREMATH V,et al. Reduced description of reactive flows with tabulation of chemistry[J]. Combustion Theory and Modelling,2011,15(6): 827-848. doi: 10.1080/13647830.2011.574156
    [36] VIÉ A,FRANZELLI B,GAO Y,et al. Analysis of segregation and bifurcation in turbulent spray flames: a 3D counterflow configuration[J]. Proceedings of the Combustion Institute,2015,35(2): 1675-1683. doi: 10.1016/j.proci.2014.06.083
    [37] ANSYS Incorporation. ANSYS Fluent 19.0 theory guide[R].Canonsburg,US: ANSYS Incorporation,2018.
  • 加载中
图(12) / 表(4)
计量
  • 文章访问数:  170
  • HTML浏览量:  49
  • PDF量:  52
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-12
  • 网络出版日期:  2022-09-07

目录

    /

    返回文章
    返回