留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

角度-空间间断有限元的热辐射限制器

李思达 孙亚松 郑澳洲 马菁

李思达, 孙亚松, 郑澳洲, 等. 角度-空间间断有限元的热辐射限制器[J]. 航空动力学报, 2022, 37(12):2865-2874 doi: 10.13224/j.cnki.jasp.20210369
引用本文: 李思达, 孙亚松, 郑澳洲, 等. 角度-空间间断有限元的热辐射限制器[J]. 航空动力学报, 2022, 37(12):2865-2874 doi: 10.13224/j.cnki.jasp.20210369
LI Sida, SUN Yasong, ZHENG Aozhou, et al. Thermal radiation limiter based on angle-space discontinuous finite element[J]. Journal of Aerospace Power, 2022, 37(12):2865-2874 doi: 10.13224/j.cnki.jasp.20210369
Citation: LI Sida, SUN Yasong, ZHENG Aozhou, et al. Thermal radiation limiter based on angle-space discontinuous finite element[J]. Journal of Aerospace Power, 2022, 37(12):2865-2874 doi: 10.13224/j.cnki.jasp.20210369

角度-空间间断有限元的热辐射限制器

doi: 10.13224/j.cnki.jasp.20210369
基金项目: 国家自然科学基金(51976173, 51976014); 江苏省自然科学基金(BK20201204)
详细信息
    作者简介:

    李思达(1998-),男,硕士生,主要从事航空发动机内高温热辐射研究

    通讯作者:

    孙亚松(1986-),男,副教授、博士生导师,博士,主要从事航空发动机内高温传热传质研究。E-mail:yssun@nwpu.edu.cn

  • 中图分类号: V231.1

Thermal radiation limiter based on angle-space discontinuous finite element

  • 摘要:

    由于航空发动机内高温热端部件是非规则形状的,其中的热辐射过程存在明显的间断遮蔽效应,如何实现该过程的精准模拟是一个挑战。采用间断有限元对辐射传递方程中角度和空间计算域进行离散,并基于分层限制的思想在角度和空间单元上引入巴斯-叶斯帕森限制器,对辐射强度数值解在角度和空间上的非物理振荡进行抑制。通过与文献中有限体积法和蒙特卡洛辐射模型的结果对比,证明了方法的有效性。此外,通过与辐射强度在角度上的解析解对比,验证了该限制器可以抑制辐射间断效应造成的数值振荡,消除辐射强度的非物理解。实现了任意空间位置上辐射强度在角度方向上的三维刻画。

     

  • 图 1  角度网格示意图

    Figure 1.  Grid diagram of angle

    图 2  空间待修正网格示意图

    Figure 2.  Grid diagram of space to be modified

    图 3  求解过程流程图

    Figure 3.  Diagram of solve procession

    图 4  圆边方腔结构示意图(单位:m)

    Figure 4.  Structure diagram of curve cavity (unit: m)

    图 5  上壁面无量纲辐射热流图

    Figure 5.  Dimensionless radiative heat flux of top wall

    图 6  L形腔结构示意图及网格示意图

    Figure 6.  Structure diagram and grid diagram of L cavity

    图 7  不同光学厚度下辐射强度分布图(A点)

    Figure 7.  Radiation intensity distribution at different optical thicknesses (point A

    图 8  肋片遮蔽方腔结构示意图及网格示意图

    Figure 8.  Structure diagram and grid diagram of curved geometry with fin shield

    图 9  不同光学厚度时上壁面无量纲辐射热流

    Figure 9.  Dimensionless radiative heat flux on wall with different optical thicknesses

    图 10  不同光学厚度下辐射强度分布图(B点和C点)

    Figure 10.  Radiation intensity distribution at different optical thicknesses (point B and point C

    图 11  $ {\tau _L} = 0.1 $时,B点和C点辐射强度三维分布图

    Figure 11.  Three-dimensional distributions of radiation intensity of $ {\tau _L} = 0.1 $ at point B and point C

    图 12  $ {\tau _L} = 0.5 $时,B点和C点辐射强度三维分布图

    Figure 12.  Three-dimensional distributions of radiation intensity of $ {\tau _L} = 0.5 $ at point B and point C

  • [1] VISKANTA R. Heat transfer by conduction and radiation in absorbing and scattering materials[J]. Journal of Heat Transfer,1965,87(1): 143-150. doi: 10.1115/1.3689035
    [2] 吴宇,钟剑龙,吕其明. 某型飞机短舱辐射换热计算[J]. 航空动力学报,2013,28(5): 1119-1124. WU Yu,ZHONG Jianlong,LÜ Qiming. Numerical investigation of thermal radiation in a nacelle[J]. Journal of Aerospace Power,2013,28(5): 1119-1124. (in Chinese doi: 10.13224/j.cnki.jasp.2013.05.021
    [3] WANG P Y,TAN H P,LIU L H,et al. Coupled radiation and conduction in a scattering composite layer with coatings[J]. Journal of Thermophysics and Heat Transfer,2000,14(4): 512-522. doi: 10.2514/2.6574
    [4] MO D,CHEN S,CHEN L,et al. Similarity criteria of target thermal radiation characteristics and their application to infrared radiation of jet engine exhaust system[J]. International Journal of Thermal Sciences,2018,125: 358-368. doi: 10.1016/j.ijthermalsci.2017.12.003
    [5] MAURENTE A,ALVES C G. Radiation heat transfer in a gas slab with properties characteristics of a jet engine combustor[J]. International Journal of Heat and Mass Transfer,2019,145(C): 118734.1-118734.9.
    [6] GAMIL A A A,NIKOLAIDIS T,LELAJ I,et al. Assessment of numerical radiation models on the heat transfer of an aero-engine combustion chamber[J]. Case Studies in Thermal Engineering,2020,22: 100772.1-100772.8. doi: 10.1016/j.csite.2020.100772
    [7] MARCHESINI G,WEBBER B R. Monte Carlo simulation of general hard processes with coherent QCD radiation[J]. Nuclear Physics B,1988,310(3/4): 461-526. doi: 10.1016/0550-3213(88)90089-2
    [8] ANDREO P. Monte Carlo techniques in medical radiation physics[J]. Physics in Medicine and Biology,1991,36(7): 861-920. doi: 10.1088/0031-9155/36/7/001
    [9] RAESIDE D E. Monte Carlo principles and applications[J]. Physics in Medicine and Biology,1976,21(2): 181-197. doi: 10.1088/0031-9155/21/2/001
    [10] ADAMS M L,Larsen E W. Fast iterative methods for discrete-ordinates particle transport calculations[J]. Progress in Nuclear Energy,2002,40(1): 3-159. doi: 10.1016/S0149-1970(01)00023-3
    [11] CHAI J C,LEE H O S,PATANKAR S V. Finite volume method for radiation heat transfer[J]. Journal of Thermophysics and Heat Transfer,1994,8(3): 419-425. doi: 10.2514/3.559
    [12] BADRI M A,JOLIVET P,ROUSSEAU B,et al. High performance computation of radiative transfer equation using the finite element method[J]. Journal of Computational Physics,2018,360: 74-92. doi: 10.1016/j.jcp.2018.01.027
    [13] MOHAN P S,TARVAINEN T,SCHWEIGER M,et al. Variable order spherical harmonic expansion scheme for the radiative transport equation using finite elements[J]. Journal of Computational Physics,2011,230(19): 7364-7383. doi: 10.1016/j.jcp.2011.06.004
    [14] CHEN S S,LI B W,SUN Y S. Chebyshev collocation spectral method for solving radiative transfer with the modified discrete ordinates formulations[J]. International Journal of Heat and Mass Transfer,2015,88: 388-397. doi: 10.1016/j.ijheatmasstransfer.2015.04.083
    [15] SUN Y S,MA J,LI B W. Spectral collocation method for convective-radiative transfer of a moving rod with variable thermal conductivity[J]. International Journal of Thermal Sciences,2015,90: 187-196. doi: 10.1016/j.ijthermalsci.2014.12.019
    [16] SUN Y S,XU J L. Thermal performance of continuously moving radiative-convective fin of complex cross-section with multiple nonlinearities[J]. International Communications in Heat and Mass Transfer,2015,63: 23-34. doi: 10.1016/j.icheatmasstransfer.2015.01.011
    [17] COELHO P J M. The role of ray effects and false scattering on the accuracy of the standard and modified discrete ordinates methods[J]. Journal of Quantitative Spectroscopy and Radiative Transfer,2002,73(2/3/4/5): 231-238. doi: 10.1016/S0022-4073(01)00202-3
    [18] HOWELL J R,MENGÜÇ M P. Challenges for radiative transfer 1: towards the effective solution of conjugate heat transfer problems[J]. Journal of Quantitative Spectroscopy and Radiative Transfer,2018,221: 253-259. doi: 10.1016/j.jqsrt.2018.10.016
    [19] ZABIHI M,LARI K,AMIRI H. Coupled radiative-conductive heat transfer problems in complex geometries using embedded boundary method[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering,2017,39(7): 2847-2864. doi: 10.1007/s40430-017-0729-5
    [20] ZHAO J M,LIU L H. Discontinuous spectral element method for solving radiative heat transfer in multidimensional semitransparent media[J]. Journal of Quantitative Spectroscopy and Radiative Transfer,2007,107(1): 1-16. doi: 10.1016/j.jqsrt.2007.02.001
    [21] ZHAO J M,LIU L H. Discontinuous spectral element approach for solving transient radiative transfer equation[J]. Journal of Thermophysics and Heat Transfer,2008,22(1): 20-28. doi: 10.2514/1.32688
    [22] 王存海,郑树,张欣欣. 非规则形状介质内辐射-导热耦合传热的间断有限元求解[J]. 物理学报,2020,69(3): 176-184. WANG Cunhai,ZHENG Shu,ZHANG Xinxin. Discontinuous finite element solutions for coupled radiation conduction heat transfer in irregular media[J]. Acta Physica Sinica,2020,69(3): 176-184. (in Chinese doi: 10.7498/aps.69.20191185
    [23] LUO H,BAUM J D,LÖHNER R. A Hermite WENO-based limiter for discontinuous Galerkin method on unstructured grids[J]. Journal of Computational Physics,2007,225(1): 686-713. doi: 10.1016/j.jcp.2006.12.017
    [24] SUGIMOTO S,KIDA J,ARITA H,et al. Principle and characteristics of a fault current limiter with series compensation[J]. IEEE Transactions on Power delivery,1996,11(2): 842-847. doi: 10.1109/61.489342
    [25] 李芳,孙唯哲,刘鑫,等. 非结构网格限制器研究[J]. 航空动力学报,2015,30(9): 2151-2159. LI Fang,SUN Weizhe,LIU Xin,et al. Research on limiters of unstructured grid[J]. Journal of Aerospace Power,2015,30(9): 2151-2159. (in Chinese doi: 10.13224/j.cnki.jasp.2015.09.013
    [26] BARTH T,JESPERSEN D. The design and application of upwind schemes on unstructured meshes[R]. Reno, US: 27th Aerospace Sciences Meeting,1989.
    [27] BISWAS R,DEVINE K D,FLAHERTY J E. Parallel, adaptive finite element methods for conservation laws[J]. Applied Numerical Mathematics,1994,14(1/2/3): 255-283. doi: 10.1016/0168-9274(94)90029-9
    [28] HOWELL J R,MENGUC M P,DAUN K,et al. Thermal radiation heat transfer[M]. 7th edition. New York,US:CRC Press,2021
    [29] CLARKE P,WANG H,GARRARD J,et al. Space-angle discontinuous Galerkin method for plane-parallel radiative transfer equation[J]. Journal of Quantitative Spectroscopy and Radiative Transfer,2019,233: 87-98. doi: 10.1016/j.jqsrt.2019.02.027
    [30] MICHALAK C,OLLIVIER-GOOCH C. Accuracy preserving limiter for the high-order accurate solution of the Euler equations[J]. Journal of Computational Physics,2009,228(23): 8693-8711. doi: 10.1016/j.jcp.2009.08.021
    [31] DO Y B,SEUNG W B,KIM M Y. Thermal radiation in a discretely heated irregular geometry using the Monte-Carlo, finite volume, and modified discrete ordinates interpolation method[J]. Numerical Heat Transfer: Part A applications,2000,37(1): 1-18.
    [32] KIM M Y,BAEK S W,PARK J H. Unstructured finite-volume method for radiative heat transfer in a complex two-dimensional geometry with obstacles[J]. Numerical Heat Transfer: Part B fundamentals,2001,39(6): 617-635. doi: 10.1080/10407790152034854
  • 加载中
图(12)
计量
  • 文章访问数:  134
  • HTML浏览量:  82
  • PDF量:  55
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-14
  • 网络出版日期:  2022-10-17

目录

    /

    返回文章
    返回