留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

突加不平衡下弹性环挤压油膜阻尼器减振性能实验

张广辉 黄延忠 陈亚龙 王震林 徐科繁 冯磊

张广辉, 黄延忠, 陈亚龙, 等. 突加不平衡下弹性环挤压油膜阻尼器减振性能实验[J]. 航空动力学报, 2023, 38(1):32-40 doi: 10.13224/j.cnki.jasp.20210371
引用本文: 张广辉, 黄延忠, 陈亚龙, 等. 突加不平衡下弹性环挤压油膜阻尼器减振性能实验[J]. 航空动力学报, 2023, 38(1):32-40 doi: 10.13224/j.cnki.jasp.20210371
ZHANG Guanghui, HUANG Yanzhong, CHEN Yalong, et al. Experiment on vibration reduction performance of elastic ring squeeze film damper under sudden unbalance[J]. Journal of Aerospace Power, 2023, 38(1):32-40 doi: 10.13224/j.cnki.jasp.20210371
Citation: ZHANG Guanghui, HUANG Yanzhong, CHEN Yalong, et al. Experiment on vibration reduction performance of elastic ring squeeze film damper under sudden unbalance[J]. Journal of Aerospace Power, 2023, 38(1):32-40 doi: 10.13224/j.cnki.jasp.20210371

突加不平衡下弹性环挤压油膜阻尼器减振性能实验

doi: 10.13224/j.cnki.jasp.20210371
基金项目: 国家自然科学基金(11572098);国家“两机”重大专项基础研究(2017-Ⅳ-0008-0045)
详细信息
    作者简介:

    张广辉(1981-),男,教授,博士,主要从事箔片轴承以及挤压油膜阻尼器机理和实验研究

  • 中图分类号: V216.2+1; TK14

Experiment on vibration reduction performance of elastic ring squeeze film damper under sudden unbalance

  • 摘要:

    为了研究在瞬态冲击(突加不平衡)下弹性环挤压油膜阻尼器(elastic ring squeeze film damper, ERSFD)对转子系统突增振动的抑制效果,设计并搭建带ERSFD的转子动力学实验台,开展突加不平衡动力学实验,获取阻尼器供油和不供油下转子系统升速及降速过程中的振动响应规律。结果表明ERSFD供油后有效地抑制了突加不平衡引起的瞬态响应,降低了突加不平衡引起的额外振动74.39%,同时抑制了转子经过临界转速的基频振动(幅值最大降低了62.18%);ERSFD供油后会在转子系统中引入额外的刚度和阻尼,其综合效果表现为转子的临界转速较ERSFD不供油的状态下,1阶临界转速降低2.39%。

     

  • 图 1  ERSFD-转子动力学实验台

    Figure 1.  ERSFD-rotor dynamics experiment rig

    图 2  挤压油膜阻尼器和轴承供油管路照片

    Figure 2.  Photograph of oil supply for squeeze film damper and bearings

    图 3  传感器布置照片

    Figure 3.  Photograph of sensors assembling

    图 4  阻尼器-鼠笼弹性支承结构图

    Figure 4.  Structure diagram of elastic supporting of damper-squirrel cage

    图 5  弹性环挤压油膜阻尼器装配示意图

    Figure 5.  Assembling sketch of elastic ring squeeze film damper

    图 6  No.4轮盘突加不平衡示意图(从B端方向看)

    Figure 6.  Sketch of sudden unbalance on No.4 disk (from view of B end)

    图 7  阻尼器无油时转子典型转速处基频振动幅值

    Figure 7.  Fundamental frequency vibration amplitude at typical speeds of rotor with damper oil free

    图 8  阻尼器无油时转子基频振动幅值变化

    Figure 8.  Variation of fundamental frequency vibration amplitude of rotor with damper oil free

    图 9  阻尼器供油时转子典型转速处基频振动幅值

    Figure 9.  Fundamental frequency vibration amplitude at typical speeds of rotor with damper oil supply

    图 10  阻尼器供油时转子基频振动幅值变化

    Figure 10.  Variation of fundamental frequency vibration amplitude of rotor with damper oil supply

    表  1  15号航空液压油主要参数

    Table  1.   Principal parameters of 15# aviation hydraulic oil

    参数数值
    密度$ \rho / $(kg/$ {\mathrm{m}}^{3} $)872
    动力黏度$ \mu / $(Pa·s)0.0195
    下载: 导出CSV

    表  2  挤压油膜阻尼器参数

    Table  2.   Squeeze film damper parameters

    参数数值
    阻尼器内环直径/mm106.6
    油膜长度/mm24
    供油压力/MPa0.3
    内(外)油膜厚度/mm0.16(0.16)
    弹性环厚度/mm1
    内(外)凸台高度/mm0.16(0.16)
    内(外)凸台数量6(6)
    内(外)凸台宽度/mm6(6)
    下载: 导出CSV

    表  3  阻尼器无油与供油时1阶临界转速处基频振幅

    Table  3.   Fundamental frequency vibration amplitude at first critical speed of the damper with oil free and supply

    实验条件1阶临界转速处基频振动幅值/μm
    x方向y方向
    阻尼器无油
    (转速为2419 r/min)
    31.246.2
    阻尼器供油
    (转速为2361 r/min)
    11.823.4
    下载: 导出CSV

    表  4  阻尼器无油与供油时突加不平衡处基频振幅

    Table  4.   Fundamental frequency vibration amplitude at condition of sudden unbalance for the damper with oil free and supply

    实验条件突加不平衡引起额外基频振动幅值/μm
    x方向y方向
    阻尼器无油
    (转速为2910 r/min)
    304.6302.2
    阻尼器供油
    (转速为3020 r/min)
    78.094.0
    下载: 导出CSV
  • [1] Federal Aviation Administration. Aircraft engines airworthiness standards: Regulations 14 CFR Part 33 [S].Washington: Federal Aviation Administration,1964: 7453-7458.
    [2] ZHANG Shiping,YAN Litang,LI Qihan. Development of porous squeeze film damper bearings for improving the blade loss dynamics of rotor-support systems[J]. Journal of Vibration and Acoustics,1992,114(3): 347-353. doi: 10.1115/1.2930268
    [3] TYAPIN I, SANDBERG M, KOKKOLARAS M, et al. Jet engine design optimization using a knowledge-based master model[C]// Proceedings of the ASME Turbo Expo: Turbine Technical Conference and Exposition.Copenhagen,Denmark: ASME,2012: 41-47.
    [4] RAMANADHAM K S,KASINA L,BOMMISETTY K,et al. A study of multiple techniques to simulate blade out event[C]// Proceedings of the ASME Gas Turbine India Conference.Bangalore, India: ASME,2017: 1-7.
    [5] ROY P A,MEGUID S A. Nonlinear transient dynamic response of a blade subject to a pulsating load in a decaying centrifugal force field[J]. International Journal of Mechanics and Materials in Design,2018,14(4): 709-728. doi: 10.1007/s10999-017-9398-x
    [6] 何文博,潘豹,白杰. 挤压油膜阻尼器转子系统突加不平衡瞬态响应分析[J]. 燃气涡轮实验与研究,2020,33(1): 36-40.

    HE Wenbo,PAN Bao,BAI Jie. Transient response analysis of squeezed film damper rotor system under sudden unbalance load[J]. Gas Turbine Experiment and Research,2020,33(1): 36-40. (in Chinese)
    [7] 李超,刘棣,马艳红,等. 叶片飞失转子动力特性及支承结构安全性设计[J]. 航空动力学报,2020,35(11): 2263-2274.

    LI Chao,LIU Di,MA Yanhong,et al. Dynamic characteristics of rotor and safety design of support structure with fan blade off[J]. Journal of Aerospace Power,2020,35(11): 2263-2274. (in Chinese)
    [8] 刘棣,李超,马艳红,等. 柔性转子动力学特性及支承结构安全性设计[J]. 航空发动机,2021,47(2): 45-51.

    LIU Di,LI Chao,MA Yanhong,et al. Aeroengine flexibility rotor dynamics and support structure safety design[J]. Aeroengine,2021,47(2): 45-51. (in Chinese)
    [9] XIA Yebao,REN Xingmin,QIN Weiyang,et al. Investigation on the transient response of a speed-varying rotor with sudden unbalance and its application in the unbalance identification[J]. Journal of Low Frequency Noise,Vibration and Active Control,2020,39(4): 1065-1086. doi: 10.1177/1461348419861837
    [10] WANG Nanfei,LIU Chao,JIANG Dongxiang. Prediction of transient vibration response of dual-rotor-blade-casing system with blade off[J]. Journal of Aerospace Engineering,2019,233(14): 5164-5176.
    [11] ZHANG Xi,LI Fucai. Simulation of cantilever rotor system dynamic characteristics under the excitation of blade out[R].Kunming:the 9th International Conference on Modelling,Identification and Control (ICMIC),2017.
    [12] WANG Zhenlin,LIU Zhansheng,ZHANG Guanghui. Dynamic characteristics of elastic ring squeeze film damper[J]. Industrial Lubrication and Tribology,2019,71(10): 1144-1151. doi: 10.1108/ILT-04-2019-0125
    [13] HAN Zhifei,DING Qian,ZHANG Wei. Dynamical analysis of an elastic ring squeeze film damper-rotor system[J]. Mechanism and Machine Theory,2019,131: 406-419. doi: 10.1016/j.mechmachtheory.2018.10.011
    [14] HAN Zhifei,MA Zhisai,ZHANG Wei,et al. Dynamic analysis of an elastic ring squeeze film damper supported rotor using a semi-analytic method[J]. Engineering Applications of Computational Fluid Mechanics,2020,14(1): 1263-1278. doi: 10.1080/19942060.2020.1820905
    [15] CHEN Weitao,CHEN Siyu,HU Zehua,et al. A novel dynamic model for the spiral bevel gear drive with elastic ring squeeze film dampers[J]. Nonlinear Dynamics,2019,98(2): 1081-1105. doi: 10.1007/s11071-019-05250-9
    [16] LU Kaihua,HE Lidong,YAN Wei. Experimental study of IERSFDs for vibration reduction of gear transmissions[J]. Journal of Vibroengineering,2019,21(2): 409-419. doi: 10.21595/jve.2019.20273
    [17] 李岩,廖眀夫,王四季. 配合关系对弹性环式挤压油膜阻尼器减振特性的影响[J]. 振动与冲击,2020,39(11): 232-238.

    LI Yan,LIAO Mingfu,WANG Siji. Effect on vibrating attenuation by the fit of elastic ring squeeze film damper[J]. Journal of Vibration and Shock,2020,39(11): 232-238. (in Chinese)
    [18] 赵璐,廖明夫,王四季,等. 弹性环式挤压油膜阻尼器减振实验研究[J]. 推进技术,2021,42(5): 1129-1137.

    ZHAO Lu,LIAO Mingfu,WANG Siji,et al. Experimental study on vibration reducing effect of elastic ring squeeze film damper[J]. Journal of Propulsion Technology,2021,42(5): 1129-1137. (in Chinese)
    [19] ZHAO Lu,LIAO Mingfu,NIU Jihui. Investigation on steady state unbalance response of rotor with elastic ring squeeze film damper[J]. Materials Science and Engineering,2020,751(1): 012043.1-012043.11.
  • 加载中
图(11) / 表(4)
计量
  • 文章访问数:  293
  • HTML浏览量:  101
  • PDF量:  78
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-15
  • 网络出版日期:  2022-09-07

目录

    /

    返回文章
    返回