Transient simulation for gas turbine overall performance coupled with secondary air system
-
摘要:
为提高燃机过渡态总体性能仿真精度,采用模块化思想建立和完善了二次空气系统精细化模型,提出了燃机总体性能与二次空气系统(SAS)耦合的过渡态仿真方法。以双轴燃机为研究对象建立了仿真算例,模拟并分析了突增、突卸和突甩负荷时二次空气系统各支路引气和汇流的动态变化对总体性能参数的影响。结果表明:通过耦合仿真可以评估燃机运行工况的变化对引气比的作用效果,在突增、突卸负荷时,二次空气系统引气比变化量为0.18%,而对于突甩负荷这种极端工况,引气比的变化量增大至0.55%;燃机主流道与二次空气系统之间的动态交互作用不会显著影响过渡态总体性能参数,但对二次空气系统各支路非均衡响应过程有较大影响,这是现代燃机精细化仿真中不可忽略的因素。
-
关键词:
- 燃机 /
- 二次空气系统(SAS) /
- 过渡态性能 /
- 引气比 /
- 耦合仿真
Abstract:To improve the simulation accuracy of transient gas turbine overall performance, a refined secondary air system (SAS) model was established and perfected in a modular fashion. A coupled simulation method for transient performance and secondary air system was further proposed. A two-spool gas turbine was modeled to analyze the dynamic variations of the SAS bleeding and returning as well as their effects on the overall engine performance parameters. Results showed that the effect of engine operating conditions on mass fractions of cooling air can be evaluated by coupled simulation method. A variation of 0.18% in the mass fractions of cooling air was observed during the sudden load change process. By comparison, this value increased to 0.55% for the gas turbine with a sudden load shedding. The mutual interactions between the main flow path and the SAS had more effect on the imbalanced local response of the SAS than the overall engine performance parameters. This phenomenon cannot be neglected in the elaborate simulation of modern gas turbines.
-
表 1 设计点参数
Table 1. Performance parameters at design point
参数 数值 $ {\dot{m}}_{\mathrm{i}\mathrm{n}\mathrm{l}\mathrm{e}\mathrm{t}} $/(kg/s) 36 ${\varPi }_{\mathrm{c} }$ 13.6 ${\varPi }_{\mathrm{t} }$ 3.9 ${\varPi }_{\mathrm{p}\mathrm{t} }$ 3.2 $ {N}_{\mathrm{h}\mathrm{p}\mathrm{s}} $/(r/min) 38143 $ {N}_{\mathrm{p}\mathrm{t}\mathrm{s}} $/(r/min) 20000 $ P $/kW 10000 $ {v}_{1} $/% 2.45 $ {v}_{2} $/% 2.17 注:${\varPi }_{\mathrm{c} }$为压气机压比,${\varPi }_{\mathrm{t} }$为涡轮落压比,${\varPi }_{\mathrm{p}\mathrm{t} }$为动力涡轮落压比,$ N $为转速,$ P $为燃机输出功率,$ v $为引气比,下标$ \mathrm{h}\mathrm{p}\mathrm{s} $表示高压轴,下标$ \mathrm{p}\mathrm{t}\mathrm{s} $表示动力涡轮轴。 -
[1] LU G,WANG F,DI MARE L,et al. Data re-use for preliminary thermal-mechanical design of gas turbine engines[J]. The Aeronautical Journal,2018,122(1249): 462-486. doi: 10.1017/aer.2017.137 [2] CARCASCI C, FACCHINI B, GORI S, et al. Heavy duty gas turbine simulation: global performances estimation and secondary air system modifications[R]. ASME Paper GT2006-90905, 2006 [3] 吴宏升. 燃气轮机总体与空气系统耦合计算方法研究与匹配分析[D]. 南京: 南京航空航天大学, 2016.WU Hongsheng. Research and matching analysis on coupling calculation method of gas turbine and air system[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2016. (in Chinese) [4] CHE W,DING S,LIU C. A modeling method on aircraft engine based on the component method of secondary air system[J]. Procedia Engineering,2014,80: 258-271. doi: 10.1016/j.proeng.2014.09.085 [5] 刘传凯,姜宏超,李艳茹,等. 航空发动机性能与二次空气系统的耦合仿真模型[J]. 航空动力学报,2017,32(7): 1623-1630.LIU Chuankai,JIANG Hongchao,LI Yanru,et al. Coupled simulation model of aero-engine performance and secondary air system[J]. Journal of Aerospace Power,2017,32(7): 1623-1630. (in Chinese) [6] NIKOLAIDIS T,WANG H,LASKARIDIS P. Transient modelling and simulation of gas turbine secondary air system[J]. Applied Thermal Engineering,2020,170: 115038.1-115038.14. [7] 于龙江,陈美宁,朴英. 航空发动机整机准三维流场仿真[J]. 航空动力学报,2008,23(6): 1008-1013.YU Longjiang,CHEN Meining,PIAO Ying. Quasi-3D simulation of aero engine full flow field[J]. Journal of Aerospace Power,2008,23(6): 1008-1013. (in Chinese) [8] WANG F. Whole aero-engine meshing and cfd simulation[D]. London, UK: Imperial College London, 2013. [9] 武芏茳. 高压涡轮燃气主流与盘腔二次流的耦合数值模拟[D]. 重庆: 重庆大学, 2016.WU Dujiang. A zonal coupling simulation for turbine stage mainstream/disk cavity interaction[D]. Chongqing: Chongqing University, 2016. (in Chinese) [10] DAVIS R L,ALONSO J J,YAO J,et al. Prediction of main/secondary-air system flow interaction in a high-pressure turbine[J]. Journal of Propulsion and Power,2005,21(1): 158-166. doi: 10.2514/1.3893 [11] AMIRANTE D,ADAMI P,HILLS N J. A multifidelity aero-thermal design approach for secondary air systems[J]. Journal of Engineering for Gas Turbines and Power,2021,143(3): 031012.1-031012.12. [12] MAY D, CHEW J W. Response of a disk cavity flow to gas turbine engine transients[R]. ASME Paper GT2010-22824, 2010. [13] MAY D,CHEW J W,SCANLON T J. Prediction of deswirled radial inflow in rotating cavities with hysteresis[J]. Journal of Turbomachinery,2013,135(4): 041025.1-041025.7. [14] ZIMMERMANN H,FIRSCHING A,DIBELIUS G H,et al. Friction losses and flow distribution for rotating disks with shielded and protruding bolts[J]. Journal of Engineering for Gas Turbines and Power,1986,108(3): 547-552. doi: 10.1115/1.3239945 [15] 《航空发动机设计手册》总编委会. 航空发动机设计手册: 第16册[M]. 北京: 航空工业出版社, 2002. [16] SEGHIR-OUALI S,SAURY D,HARMAND S,et al. Convective heat transfer inside a rotating cylinder with an axial air flow[J]. International Journal of Thermal Sciences,2006,45(12): 1166-1178. doi: 10.1016/j.ijthermalsci.2006.01.017 [17] American Society of Heating, Refrigeration and air-conditioning engineers. 2009 ASHRAE handbook - fundamentals (SI edition)[M]. Georgia: American Society of Heating, Refrigeration and Air-Conditioning Engineers, 2009. [18] MCGREEHAN W F,SCHOTSCH M J. Flow characteristics of long orifices with rotation and corner radiusing[J]. Journal of Turbomachinery,1988,110(2): 213-217. doi: 10.1115/1.3262183 [19] ISOBEL MEAR L,MICHAEL OWEN J,LOCK G D. Theoretical model to determine effect of ingress on turbine disks[J]. Journal of Engineering for Gas Turbines and Power,2016,138(3): 032502.1-032502.9. [20] 邬泽宇,罗翔,胡彦文,等. 凸起迎风面积对不同轮缘封严结构封严效率影响的实验研究[J]. 推进技术,2019,40(5): 1065-1072.WU Zeyu,LUO Xiang,HU Yanwen,et al. Experimental study on effects of section area of protrusion on sealing efficiency of different rim seal[J]. Journal of Propulsion Technology,2019,40(5): 1065-1072. (in Chinese) [21] JOACHIMMIAK D. Universal method for determination of leakage in labyrinth seal[J]. Journal of Applied Fluid Mechanics,2020,13(3): 935-943. doi: 10.29252/jafm.13.03.30618 [22] VERMES G. A fluid mechanics approach to the labyrinth seal leakage problem[J]. Journal of Engineering for Power,1961,83(2): 161-169. doi: 10.1115/1.3673158 [23] CANGIOLI F,VANNINI G,PENNACCHI P,et al. Rotordynamic characterization of a staggered labyrinth seal: experimental test data and comparison with predictions[J]. Journal of Engineering for Gas Turbines and Power,2019,141(1): 011009.1-011009.12. [24] DILLON J L. A study of turbomachinery compressible gas labyrinth seal rotordynamic coefficients[D]. Bethlehem: Lehigh University, 1990. [25] HOLLAND M J,THAKE T F. Rotor blade cooling in high pressure turbines[J]. Journal of Aircraft,1980,17(6): 412-418. doi: 10.2514/3.44668 [26] SALPINGIDOU C,TSAKMAKIDOU D,VLAHOSTERGIOS Z,et al. Analysis of turbine blade cooling effect on recuperative gas turbines cycles performance[J]. Energy,2018,164: 1271-1285. doi: 10.1016/j.energy.2018.08.204 [27] 王文三,唐菲,赵庆军,等. 新型双射流冷却孔对气膜冷却效率影响的研究[J]. 工程热物理学报,2011,32(8): 1291-1294.WANG Wensan,TANG Fei,ZHAO Qingjun,et al. An investigation of the effect of new-type double-jet film cooling (DJFC) hole on film cooling effectiveness[J]. Journal of Engineering Thermophysics,2011,32(8): 1291-1294. (in Chinese) [28] 姚玉,张靖周,何飞,等. 涡轮叶片吸力面气膜冷却效率的数值研究[J]. 航空动力学报,2010,25(6): 1245-1250.YAO Yu,ZHANG Jingzhou,HE Fei,et al. Numerical investigation on film cooling effectiveness at suction surface of stator blade[J]. Journal of Aerospace Power,2010,25(6): 1245-1250. (in Chinese) [29] YOUNG J B,WILCOCK R C. Modeling the air-cooled gas turbine: Part 2 coolant flows and losses[J]. Journal of Turbomachinery,2002,124(2): 214-221. doi: 10.1115/1.1415038 [30] MAIKELL J, BOGARD D, PIGGUSH J, et al. Experimental simulation of a film cooled turbine blade leading edge including thermal barrier coating effects[J]. Journal of Turbomachinery, 2011, 133(1): 011014.1-011014.7. [31] 邬健,余又红,贺星. 两种控制方案对发电用燃气轮机调速性能影响的仿真研究[J]. 汽轮机技术,2015,57(5): 357-359, 398.WU Jian,YU Youhong,HE Xing. Simulation study on the influence of regulation of gas turbine for power generation based on different control scheme[J]. Turbine Technology,2015,57(5): 357-359, 398. (in Chinese) [32] 陶智,侯升平,韩树军,等. 流体网络法在发动机空气冷却系统设计中的应用[J]. 航空动力学报,2009,24(1): 1-6.TAO Zhi,HOU Shengping,HAN Shujun,et al. Study on application of fluid network into the design of air system in engine[J]. Journal of Aerospace Power,2009,24(1): 1-6. (in Chinese) [33] YANG X,YANG Q,DONG W. Aeroengine data reconciliation model based on cooperative working equations[J]. Energy,2019,186: 115914.1-115914.11. [34] 王元,李秋红,黄向华. 基于自校正Broyden拟牛顿法的航空发动机模型数值计算[J]. 航空动力学报,2016,31(1): 249-256.WANG Yuan,LI Qiuhong,HUANG Xianghua. Numerical calculation of aero-engine model based on self-tuning Broyden quasi-Newton method[J]. Journal of Aerospace Power,2016,31(1): 249-256. (in Chinese) [35] 吴宏,胡肖肖. 应用特征线法求解航空发动机瞬态空气系统[J]. 航空动力学报,2013,28(9): 2003-2008.WU Hong,HU Xiaoxiao. Solving transient second air system in engine by characteristics method[J]. Journal of Aerospace Power,2013,28(9): 2003-2008. (in Chinese) [36] 余又红,邬健,贺星. 船舶发电用三轴燃气轮机控制仿真研究[J]. 计算机仿真,2016,33(5): 10-14. doi: 10.3969/j.issn.1006-9348.2016.05.003YU Youhong,WU Jian,HE Xing. Simulation study of marine three-shaft gas turbine controlling for power generation[J]. Computer Simulation,2016,33(5): 10-14. (in Chinese) doi: 10.3969/j.issn.1006-9348.2016.05.003