Simplified linear stability theory for boundary layer of three-dimensional curved surface
-
摘要:
分析了贴体曲线正交坐标系下线性化小扰动方程(LPEs)中各曲率项的量级,结果显示大部分曲率项都是高阶小量。通过忽略这些高阶小量,得到了贴体曲线正交坐标系下的简化版小扰动方程。简化版小扰动方程不需要繁琐推导,可直接来源于笛卡儿坐标系下的小扰动方程的简单拓展,方便初学者使用。基于简化版的小扰动方程,发展出了能适用于三维曲面边界层的简洁形式的线性稳定性理论(LST)。针对亚声速后掠翼边界层的稳定性,简洁形式LST预测的横流失稳增长率与完整形式LST结果的绝对偏差小于4×10−5;针对高超声速尖锥边界层的稳定性,简洁形式LST精确预测了周向曲率对Mack模态中性曲线的影响。数值结果表明简洁形式的LST拥有与完整形式的LST几乎相同的精确度。
Abstract:The magnitude orders of the terms of the linearized perturbation equations (LPEs) in body-fitted three-dimensional curvilinear orthogonal coordinates were analyzed. Results showed that most of the curvature-related terms were represented by high-order small quantities. The LPEs in body-fitted curvilinear orthogonal coordinates were greatly simplified by neglecting the high-order small quantities, which resulted in the simplified LPEs. The tedious derivation of the fully LPEs in curvilinear orthogonal coordinates was no longer needed. The simplified LPEs can be easily obtained by extending the Cartesian LPEs to body-fitted curvilinear orthogonal coordinates for the convenience of beginners. The simplified linear stability theory (LST) suitable for boundary layers with surface curvatures was developed based on the simplified LPEs. The accuracy of the simplified LST was validated in the boundary layers on the curved surfaces of a subsonic sweep wing and a hypersonic sharp-nose cone. For the former, the growth rate of crossflow instability predicted by the simplified LST deviated from the result predicted by the full form LST less than 4×10−5; for the later, the simplified LST accurately predicted the effect of circumferential curvature on the neutral line of the Mack mode. Numerical results showed that the simplified LST had almost the same accuracy with the full form LST.
-
-
[1] 陈坚强,涂国华,张毅锋,等. 高超声速边界层转捩研究现状与发展趋势[J]. 空气动力学学报,2017,35(3): 311-337.CHEN Jianqiang,TU Guohua,ZHANG Yifeng,et al. Hypersnonic boundary layer transition: what we know, where shall we go[J]. Acta Aerodynamica Sinica,2017,35(3): 311-337. (in Chinese) [2] REED H L,SARIC W S,ARNAL D. Linear stability theory applied to boundary layers[J]. Annual Review of Fluid Mechanics,1996,28: 389-428. doi: 10.1146/annurev.fl.28.010196.002133 [3] MACK L M. Boundary-layer linear stability theory[R]. AGARD SEE N84-33757 23-34, 1984. [4] 李宁,罗纪生. 不可压平板边界层转捩机理[J]. 航空动力学报,2013,28(4): 743-751.LI Ning,LUO Jisheng. Transition mechanism of an incompressible boundary layer on a flat plate[J]. Journal of Aerospace Power,2013,28(4): 743-751. (in Chinese) [5] 袁湘江,李国良,刘智勇,等. 小攻角高超声速钝锥边界层失稳特性[J]. 航空动力学报,2011,26(12): 2805-2811.YUAN Xiangjiang,LI Guoliang,LIU Zhiyong,et al. Study of the instability characteristic in the boundary layer of a hypersonic blunt cone at low angle of attack[J]. Journal of Aerospace Power,2011,26(12): 2805-2811. (in Chinese) [6] 袁湘江,陆利蓬,沈清,等. 钝体头部边界层“逾越”型转捩机理研究[J]. 航空动力学报,2008,23(1): 81-86.YUAN Xiangjiang,LU Lipeng,SHEN Qing,et al. Study of bypass transition mechanisms in the boundary layer of blunt bodies[J]. Journal of Aerospace Power,2008,23(1): 81-86. (in Chinese) [7] 樊宇,万兵兵,韩宇峰,等. 平衡空气模型的流动稳定性及转捩预测[J]. 航空动力学报,2016,31(7): 1658-1668.FAN Yu,WAN Bingbing,HAN Yufeng,et al. Hydrodynamic stability and transition prediction with the chemical equilibrium gas model[J]. Journal of Aerospace Power,2016,31(7): 1658-1668. (in Chinese) [8] 万兵兵,韩宇峰,樊宇,等. 高温空气传输特性对边界层稳定性及转捩预测的影响[J]. 航空动力学报,2017,32(1): 188-195.WAN Bingbing,HAN Yufeng,FAN Yu,et al. Effect of transport properties of high-temperature air on boundary layer stability and transition prediction[J]. Journal of Aerospace Power,2017,32(1): 188-195. (in Chinese) [9] 郭启龙,涂国华,陈坚强,等. 横向矩形微槽对高超边界层失稳的控制作用[J]. 航空动力学报,2020,35(1): 135-143.GUO Qilong,TU Guohua,CHEN Jianqiang,et al. Control of hypersonic boundary layer instability by transverse rectangular micro-cavities[J]. Journal of Aerospace Power,2020,35(1): 135-143. (in Chinese) [10] 赵俊波,沈清,张红军,等. 基于T-S波谐频共振的超燃进气道边界层转捩[J]. 航空动力学报,2010,25(11): 2420-2424.ZHAO Junbo,SHEN Qing,ZHANG Hongjun,et al. Boundary transition research of scramjet inlet based on the Tollmien-Schlichting(T-S) wave syntony[J]. Journal of Aerospace Power,2010,25(11): 2420-2424. (in Chinese) [11] 李瑾,苏伟,黄章峰,等. 质量引射对边界层稳定性的影响[J]. 航空动力学报,2020,35(2): 280-293.LI Jin,SU Wei,HUANG Zhangfeng,et al. Effect of mass ejection on boundary layers stability[J]. Journal of Aerospace Power,2020,35(2): 280-293. (in Chinese) [12] HAYNES T S,REED H L. Simulation of swept-wing vortices using nonlinear parabolized stability equations[J]. Journal of Fluid Mechanics,2000,405: 325-349. doi: 10.1017/S0022112099007260 [13] REN J,FU S. Secondary instabilities of Görtler vortices in high-speed boundary layer flows[J]. Journal of Fluid Mechanics,2015,781: 388-421. doi: 10.1017/jfm.2015.490 [14] 梁贤. 高超声速钝锥边界层稳定性特征[D]. 上海: 上海大学, 2010.LIANG Xian. Boundary layer stability characteristics of hypersonic flow over a blunt cone[D]. Shanghai: Shanghai University, 2010. (in Chinese) [15] 徐国亮. 三维边界层流动失稳与Bypass转捩模式研究[D]. 北京: 清华大学, 2011.XU Guoliang. Instability of three-dimensional boundary layers and modeling Bypass transition[D]. Beijing: Tsinghua University, 2011. (in Chinese) [16] 涂国华. 超音速边界层稳定性及其高阶激波捕捉格式研究[D]. 四川 绵阳: 中国空气动力研究与发展中心, 2008.TU Guohua. Stability analysis of supersonic boundary layers and high order shock-capturing schemes[D]. Mianyang Sichuan: China Aerodynamics Research and Development Center, 2008. (in Chinese) [17] LI X L,FU D X,MA Y W. DNS of compressible turbulent boundary layer around a sharp cone[J]. Science in China Series G:Physics, Mechanics and Astronomy,2008,51(6): 699-714. doi: 10.1007/s11433-008-0007-8 [18] 逯学志,赵磊,罗纪生. 后掠翼边界层定常横流涡的非线性演化[J]. 应用数学和力学,2016,37(10): 1073-1084.LU Xuezhi,ZHAO Lei,LUO Jisheng. Nonlinear evolution of stationary crossflow vortices in swept-wing boundary layers[J]. Applied Mathematics and Mechanics,2016,37(10): 1073-1084. (in Chinese) [19] LU X Z,LUO J S. Applications of EPSE method for predicting crossflow instability in swept-wing boundary layers[J]. Applied Mathematics and Mechanics,2017,38(7): 981-996. doi: 10.1007/s10483-017-2214-6 [20] KARA K,BALAKUMAR P,KANDIL O A. Effects of nose bluntness on hypersonic boundary-layer receptivity and stability over cones[J]. AIAA Journal,2011,49(12): 2593-2606. doi: 10.2514/1.J050032