Modelling of pre-tightening force in rod-fastened rotors and it induced vibration localization
-
摘要:
为探究拉杆转子在考虑接触面力学特性下预紧力失谐诱发振动的机理,从弹塑性理论及接触面微观角度,详细分析了单个微凸体在接触过程中的变形规律和力学特性,并通过高斯分布得到接触面宏观的力学接触模型。结合接触面力学特性,建立了一种保证其原始模型主要特征参数不变且能够确定其厚度的等效接触层;进一步通过这种等效接触层模型分析了拉杆预紧力降低和周向失谐时临界转速和固有频率的变化规律;利用波的传递揭示了预紧力周向失谐诱发拉杆转子振动模态局部化的机理。结果表明:预紧力减弱后,等效接触层刚度减小,临界转速和固有频率降低;随着预紧力失谐拉杆数量的增加,转子的临界转速和固有频率降低。当外部激励的频率处于拉杆转子的频率禁带时,振动能量无法传遍整体结构而积聚在局部区域,从而诱发了振动局部化现象。论文研究结果能够为复杂拉杆转子的动力学分析和优化设计提供参考方法。
Abstract:In order to explore the mechanism of the vibration induced by the pre-tightening mistune of the rod-fastened rotor considering the mechanical characteristics of the contact surface, and viewed from the elastoplastic theory and the microscopics of the contact surface, the deformation laws and mechanical characteristics of a single asperity in the contact process were analyzed in detail, and the macroscopic mechanical contact model of the contact surface was obtained through Gaussian distribution. First, an equivalent contact layer was established to ensure that the main characteristic parameters of the original model could be kept unchanged and its thickness was determined, based on the mechanical properties of the contact surface; then, the variation law of critical speed and natural frequency when the pre-tightening force was reduced and detuned in the circumferential direction was further analyzed by this equivalent contact layer model; finally, the mechanism of vibration mode localization of rod-fastened rotor induced by circumferential detuning of pre-tightening force was revealed by means of wave transmission. The results showed that the equivalent contact layer stiffness and the critical speed and natural frequency decreased as the pre-tightening reduced. Moreover, the critical speed and natural frequency of the rotor became lower, as the number of pre-tightening detuning rods increased. As the fluctuation frequency of the rod-fastened rotor was within the frequency stop-band, the vibration energy cannot be transmitted throughout the whole structure. The research results can provide a reference method for the dynamic analysis and optimal design of complex rod-fastened rotors.
-
表 1 接触面参数的变化
Table 1. Variation of contact surface parameters
预紧力/N 压强/GPa 刚度/(GN/m) 阶段 0.0001 0.1803 0.0002 弹性 $\vdots $ $\vdots $ $\vdots $ $\vdots $ 0.0065 0.6983 0.0006 弹性 0.0014 1.1536 0.0008 弹塑性 $\vdots $ $\vdots $ $\vdots $ $\vdots $ 4.6755 1.9583 0.0027 弹塑性 4.9260 1.96 0.0024 塑性 表 2 不同预紧力条件下4个接触面的参数
Table 2. Parameters of four contact surfaces with different pre-tightening
接触面
名称拉杆
预紧力/kN刚度/
(GN/m)弹性模量/
GPa泊松比 第1接触界面 300 90.8678 9.8642 0.0652 600 152.4454 15.9863 0.0732 第2接触界面 300 93.1667 9.0938 0.0700 600 157.1805 14.8537 0.0774 第3接触界面 300 95.0672 8.4074 0.0752 600 161.7066 13.8706 0.0820 第4接触界面 300 97.13077 7.8317 0.0807 600 165.5469 12.9716 0.0869 表 3 不同预紧力下转子的临界转速和固有频率
Table 3. Critical speed and natural frequency of the rotor under different pre-tightening
模态
阶数临界转速/Hz 固有频率/Hz F =300 kN F =600 kN F =300 kN F =600 kN 1 2.85 3.56 1.42 1.78 2 22.44 27.54 11.28 13.87 3 24.22 29.73 11.31 13.89 4 356.18 363.82 179.65 182.94 5 671.63 709.51 367.69 388.88 6 791.31 828.24 367.7 388.89 7 998.85 1033.55 450.25 467.28 8 1484.2 1570.22 826.96 865.01 9 1684.1 1765.98 827.3 865.33 表 4 6种预紧力失谐形式相应的临界转速和固有频率
Table 4. Critical speed and natural frequency of six types of pre-tightening detuning
模态 临界转速/Hz 固有频率/Hz Ⅰ Ⅱ Ⅲ Ⅳ Ⅴ Ⅵ Ⅰ Ⅱ Ⅲ Ⅳ Ⅴ Ⅵ 1 2.36 2.36 2.36 2.36 2.36 2.36 1.18 1.18 1.18 1.18 1.18 1.18 2 24.22 23.77 23.32 22.86 22.39 22.14 12.32 12.19 11.96 11.73 11.50 11.26 3 25.99 25.52 25.04 24.55 24.04 23.76 12.41 12.20 11.97 11.74 11.51 11.27 4 353.06 352.43 351.89 351.35 350.61 349.88 179.32 179.11 178.86 178.61 178.24 177.93 5 721.99 721.41 720.3 719.92 718.96 717.82 382.13 381.41 380.69 380.45 379.8 379.09 6 764.77 764.38 763.72 762.35 762.38 759.99 382.65 382.27 381.78 380.85 380.71 379.2 7 974.76 974.5 974.12 973.77 973.61 972.81 463.9 463.03 462.6 462.21 461.95 461.13 8 1631.5 1630.9 1628.7 1627.6 1626.2 1624.4 806.77 805.23 803.62 803.05 801.87 801.16 9 1806.8 1805 1802.5 1799.2 1796.5 1791 809.31 808.1 807.39 805.72 804.8 801.7 表 5 定量评估预紧力失谐下的振动局部化
Table 5. Quantitative assessment of vibration localization under preload detuning
失谐类型 无量纲位移/10−3 位移局部化因子/10−2 A 9.16 9.92 B 9.25 19.85 C 9.34 29.77 D 9.43 39.7 E 9.62 60.64 F 9.71 70.56 -
[1] TALAH D, BENTARZI H. Modeling and analysis of heavy-duty gas turbine based on frequency dependent model[R]. Istanbul: International Conference on Electrical Engineering, 2020. [2] 张颖. GE9FA重型燃气轮机建模与控制研究[D]. 河北 保定: 华北电力大学, 2014.ZHANG Ying. Research on the model and control systems of the GE9FA heavy-duty gas turbine[D]. Baoding Hebei: North China Electric Power University, 2014. (in Chinese) [3] 王延博. 电站大型燃气轮机振动特性[J]. 热力发电,2002,31(3): 29-32, 40.WANG Yanbo. Vibration characteristics of large gas turbine in power station[J]. Thermal Power Generation,2002,31(3): 29-32, 40. (in Chinese) [4] 袁奇,高进,李浦,等. 重型燃气轮机转子结构及动力学特性研究综述[J]. 热力透平,2013,42(4): 294-301.YUAN Qi,GAO Jin,LI Pu,et al. A review for structure and dynamic characteristics of heavy-duty gas turbine rotor[J]. Thermal Turbine,2013,42(4): 294-301. (in Chinese) [5] 陈力涛. 燃气轮机拉杆转子系统动力特性和不平衡响应研究[D]. 南京: 东南大学, 2012.CHEN Litao. Study on dynamic characteristics and unbalanced response of gas turbine tie-rod rotor system[D]. Nanjing: Southeast University, 2012. (in Chinese) [6] ANDERSON P W. Absence of diffusion in certain random lattices[J]. Physical Review,1958,109(5): 1492-1505. doi: 10.1103/PhysRev.109.1492 [7] HODGES C H. Confinement of vibration by structural irregularity[J]. Journal of Sound and Vibration,1982,82(3): 411-424. doi: 10.1016/S0022-460X(82)80022-9 [8] 王毅泽. 周期结构中弹性波的色散关系与振动局部化问题研究[D]. 哈尔滨: 哈尔滨工业大学, 2006.WANG Yize. Study on the elastic wave dispersion relation of periodic structure and vibration localization[D]. Harbin: Harbin Institute of Technology, 2006. (in Chinese) [9] 赵润超. 燃气轮机拉杆转子模型等效约化方法及动力学分析[D]. 哈尔滨: 哈尔滨工业大学, 2020.ZHAO Runchao. Model equivalent reduction method and dynamic analysis of rod-fastening gas turbine rotor[D]. Harbin: Harbin Institute of Technology, 2020. (in Chinese) [10] 李玲,蔡安江,蔡力钢,等. 螺栓结合面微观接触模型[J]. 机械工程学报,2016,52(7): 205-212. doi: 10.3901/JME.2016.07.205LI Ling,CAI Anjiang,CAI Ligang,et al. Micro-contact model of bolted-joint interface[J]. Journal of Mechanical Engineering,2016,52(7): 205-212. (in Chinese) doi: 10.3901/JME.2016.07.205 [11] LIN L P,LIN J F. An elastoplastic microasperity contact model for metallic materials[J]. Journal of Tribology,2005,127(3): 666-672. doi: 10.1115/1.1843830 [12] VAKIS A I. Asperity interaction and substrate deformation in statistical summation models of contact between rough surfaces[J]. Journal of Applied Mechanics,2014,81(4): 041012-1-041012-10. doi: 10.1115/1.4025413 [13] KOGUT L,ETSION I. Elastic-plastic contact analysis of a sphere and a rigid flat[J]. Journal of Applied Mechanics,2002,69(5): 657-662. doi: 10.1115/1.1490373 [14] 田红亮. 机械结构固定结合部虚拟材料的动力学建模[D]. 武汉: 华中科技大学, 2011.TIAN Hongliang. Dynamic modeling on fixed joint interface virtual material in mechanical structure[D]. Wuhan: Huazhong University of Science and Technology, 2011. (in Chinese) [15] 李辉光,刘恒,虞烈. 粗糙机械结合面的接触刚度研究[J]. 西安交通大学学报,2011,45(6): 69-74.LI Huiguang,LIU Heng,YU Lie. Contact stiffness of rough mechanical joint surface[J]. Journal of Xi’an Jiaotong University,2011,45(6): 69-74. (in Chinese) [16] 赵问银,张家忠,周成武. 大型离心叶轮振动模态局部化特性研究[J]. 应用力学学报,2012,29(6): 699-704, 775.ZHAO Wenyin,ZHANG Jiazhong,ZHOU Chengwu. Study on the vibration localization in the centrifugal Impeller with periodic structures[J]. Chinese Journal of Applied Mechanics,2012,29(6): 699-704, 775. (in Chinese) [17] 祝梦洁,张锁怀,丁鑫. 分布式拉杆转子预紧失谐对固有频率的影响[J]. 机床与液压,2020,48(13): 17-21. doi: 10.3969/j.issn.1001-3881.2020.13.004ZHU Mengjie,ZHANG Suohuai,DING Xin. Effects of pre-tightening detuning on the natural frequency of distributed tie-rod rotor[J]. Machine Tool & Hydraulics,2020,48(13): 17-21. (in Chinese) doi: 10.3969/j.issn.1001-3881.2020.13.004 [18] ZHANG Hongyuan,YUAN Huiqun,YANG Wenjun,et al. Research on vibration localization of mistuned bladed disk system[J]. Journal of Vibroengineering,2017,19(5): 3296-3312. doi: 10.21595/jve.2017.17822 [19] 王建军,于长波,姚建尧,等. 失谐叶盘振动模态局部化定量描述方法[J]. 推进技术,2009,30(4): 457-461, 473.WANG Jianjun,YU Changbo,YAO Jianyao,et al. Vibratory mode localization factors of mistuned bladed disk assemblies[J]. Journal of Propulsion Technology,2009,30(4): 457-461, 473. (in Chinese)