留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

拉杆转子预紧力建模及其诱发振动局部化研究

王奇 贾睿东 杨树华 孟继纲 张家忠

王奇, 贾睿东, 杨树华, 等. 拉杆转子预紧力建模及其诱发振动局部化研究[J]. 航空动力学报, 2023, 38(12):3020-3030 doi: 10.13224/j.cnki.jasp.20210383
引用本文: 王奇, 贾睿东, 杨树华, 等. 拉杆转子预紧力建模及其诱发振动局部化研究[J]. 航空动力学报, 2023, 38(12):3020-3030 doi: 10.13224/j.cnki.jasp.20210383
WANG Qi, JIA Ruidong, YANG Shuhua, et al. Modelling of pre-tightening force in rod-fastened rotors and it induced vibration localization[J]. Journal of Aerospace Power, 2023, 38(12):3020-3030 doi: 10.13224/j.cnki.jasp.20210383
Citation: WANG Qi, JIA Ruidong, YANG Shuhua, et al. Modelling of pre-tightening force in rod-fastened rotors and it induced vibration localization[J]. Journal of Aerospace Power, 2023, 38(12):3020-3030 doi: 10.13224/j.cnki.jasp.20210383

拉杆转子预紧力建模及其诱发振动局部化研究

doi: 10.13224/j.cnki.jasp.20210383
基金项目: 国家科技重大专项(779608000000200007); 重点基础研究课题(2019-JCJQ-ZD-177-01)
详细信息
    作者简介:

    王奇(1996-),男,硕士生,主要从事透平机械多级盘-拉杆组合转子动力学分析方法研究。E-mail:wangqi123@stu.xjtu.edu.cn

    通讯作者:

    张家忠(1968-),男,教授,博士,主要从事非线性流动及燃烧稳定性、非线性动力学研究。E-mail:jzzhang@mail.xjtu.edu.cn

  • 中图分类号: V19

Modelling of pre-tightening force in rod-fastened rotors and it induced vibration localization

  • 摘要:

    为探究拉杆转子在考虑接触面力学特性下预紧力失谐诱发振动的机理,从弹塑性理论及接触面微观角度,详细分析了单个微凸体在接触过程中的变形规律和力学特性,并通过高斯分布得到接触面宏观的力学接触模型。结合接触面力学特性,建立了一种保证其原始模型主要特征参数不变且能够确定其厚度的等效接触层;进一步通过这种等效接触层模型分析了拉杆预紧力降低和周向失谐时临界转速和固有频率的变化规律;利用波的传递揭示了预紧力周向失谐诱发拉杆转子振动模态局部化的机理。结果表明:预紧力减弱后,等效接触层刚度减小,临界转速和固有频率降低;随着预紧力失谐拉杆数量的增加,转子的临界转速和固有频率降低。当外部激励的频率处于拉杆转子的频率禁带时,振动能量无法传遍整体结构而积聚在局部区域,从而诱发了振动局部化现象。论文研究结果能够为复杂拉杆转子的动力学分析和优化设计提供参考方法。

     

  • 图 1  微凸体接触模型示意图[10]

    Figure 1.  Schematic diagram of asperity contact model [10]

    图 2  微凸体分布图

    Figure 2.  Distribution of asperities

    图 3  等效接触层变形示意图

    Figure 3.  Schematic diagram of equivalent contact layer deformation

    图 4  轮盘加工表面示意图

    Figure 4.  Schematic diagram of the processing surface of the roulette

    图 5  等效接触层密度示意图

    Figure 5.  Schematic diagram of equivalent contact layer density

    图 6  转子剖面图

    Figure 6.  Sectional view of the rotor

    图 7  压强、刚度随预紧力变化

    Figure 7.  Pressure and stiffness change with pre-tightening

    图 8  实际接触面积及刚度随预紧力变化

    Figure 8.  Real contact area and stiffness change with pre-tightening

    图 9  粗糙面

    Figure 9.  Rough surface

    图 10  粗糙体

    Figure 10.  Rough body

    图 11  目标面-接触面模型

    Figure 11.  Target surface-contact surface model

    图 12  接触分析应力云图

    Figure 12.  Contact analysis stress cloud diagram

    图 13  等效转子网格

    Figure 13.  Equivalent rotor grid

    图 14  轮盘-等效接触层应变能云图

    Figure 14.  Roulette-equivalent contact layer strain energy cloud diagram

    图 15  6种预紧力失谐

    Figure 15.  Six types of pre-tightening forces are detuned

    图 16  固有频率为178.86 Hz时的主振型

    Figure 16.  Principal mode shape as the natural frequency is 178.86 Hz

    图 17  固有频率为803.62 Hz时的主振型

    Figure 17.  Principle mode shape as the natural frequency is 803.62 Hz

    图 18  波的传播

    Figure 18.  Wave propagation

    表  1  接触面参数的变化

    Table  1.   Variation of contact surface parameters

    预紧力/N压强/GPa刚度/(GN/m)阶段
    0.00010.18030.0002弹性
    $\vdots $$\vdots $$\vdots $$\vdots $
    0.00650.69830.0006弹性
    0.00141.15360.0008弹塑性
    $\vdots $$\vdots $$\vdots $$\vdots $
    4.67551.95830.0027弹塑性
    4.92601.960.0024塑性
    下载: 导出CSV

    表  2  不同预紧力条件下4个接触面的参数

    Table  2.   Parameters of four contact surfaces with different pre-tightening

    接触面
    名称
    拉杆
    预紧力/kN
    刚度/
    (GN/m)
    弹性模量/
    GPa
    泊松比
    第1接触界面30090.86789.86420.0652
    600152.445415.98630.0732
    第2接触界面30093.16679.09380.0700
    600157.180514.85370.0774
    第3接触界面30095.06728.40740.0752
    600161.706613.87060.0820
    第4接触界面30097.130777.83170.0807
    600165.546912.97160.0869
    下载: 导出CSV

    表  3  不同预紧力下转子的临界转速和固有频率

    Table  3.   Critical speed and natural frequency of the rotor under different pre-tightening

    模态
    阶数
    临界转速/Hz 固有频率/Hz
    F =300 kNF =600 kNF =300 kNF =600 kN
    12.853.56 1.421.78
    222.4427.5411.2813.87
    324.2229.7311.3113.89
    4356.18363.82179.65182.94
    5671.63709.51367.69388.88
    6791.31828.24367.7388.89
    7998.851033.55450.25467.28
    81484.21570.22826.96865.01
    91684.11765.98827.3865.33
    下载: 导出CSV

    表  4  6种预紧力失谐形式相应的临界转速和固有频率

    Table  4.   Critical speed and natural frequency of six types of pre-tightening detuning

    模态临界转速/Hz固有频率/Hz
    12.362.362.362.362.362.361.181.181.181.181.181.18
    224.2223.7723.3222.8622.3922.1412.3212.1911.9611.7311.5011.26
    325.9925.5225.0424.5524.0423.7612.4112.2011.9711.7411.5111.27
    4353.06352.43351.89351.35350.61349.88179.32179.11178.86178.61178.24177.93
    5721.99721.41720.3719.92718.96717.82382.13381.41380.69380.45379.8379.09
    6764.77764.38763.72762.35762.38759.99382.65382.27381.78380.85380.71379.2
    7974.76974.5974.12973.77973.61972.81463.9463.03462.6462.21461.95461.13
    81631.51630.91628.71627.61626.21624.4806.77805.23803.62803.05801.87801.16
    91806.818051802.51799.21796.51791809.31808.1807.39805.72804.8801.7
    下载: 导出CSV

    表  5  定量评估预紧力失谐下的振动局部化

    Table  5.   Quantitative assessment of vibration localization under preload detuning

    失谐类型无量纲位移/10−3位移局部化因子/10−2
    A9.169.92
    B9.2519.85
    C9.3429.77
    D9.4339.7
    E9.6260.64
    F9.7170.56
    下载: 导出CSV
  • [1] TALAH D, BENTARZI H. Modeling and analysis of heavy-duty gas turbine based on frequency dependent model[R]. Istanbul: International Conference on Electrical Engineering, 2020.
    [2] 张颖. GE9FA重型燃气轮机建模与控制研究[D]. 河北 保定: 华北电力大学, 2014.

    ZHANG Ying. Research on the model and control systems of the GE9FA heavy-duty gas turbine[D]. Baoding Hebei: North China Electric Power University, 2014. (in Chinese)
    [3] 王延博. 电站大型燃气轮机振动特性[J]. 热力发电,2002,31(3): 29-32, 40.

    WANG Yanbo. Vibration characteristics of large gas turbine in power station[J]. Thermal Power Generation,2002,31(3): 29-32, 40. (in Chinese)
    [4] 袁奇,高进,李浦,等. 重型燃气轮机转子结构及动力学特性研究综述[J]. 热力透平,2013,42(4): 294-301.

    YUAN Qi,GAO Jin,LI Pu,et al. A review for structure and dynamic characteristics of heavy-duty gas turbine rotor[J]. Thermal Turbine,2013,42(4): 294-301. (in Chinese)
    [5] 陈力涛. 燃气轮机拉杆转子系统动力特性和不平衡响应研究[D]. 南京: 东南大学, 2012.

    CHEN Litao. Study on dynamic characteristics and unbalanced response of gas turbine tie-rod rotor system[D]. Nanjing: Southeast University, 2012. (in Chinese)
    [6] ANDERSON P W. Absence of diffusion in certain random lattices[J]. Physical Review,1958,109(5): 1492-1505. doi: 10.1103/PhysRev.109.1492
    [7] HODGES C H. Confinement of vibration by structural irregularity[J]. Journal of Sound and Vibration,1982,82(3): 411-424. doi: 10.1016/S0022-460X(82)80022-9
    [8] 王毅泽. 周期结构中弹性波的色散关系与振动局部化问题研究[D]. 哈尔滨: 哈尔滨工业大学, 2006.

    WANG Yize. Study on the elastic wave dispersion relation of periodic structure and vibration localization[D]. Harbin: Harbin Institute of Technology, 2006. (in Chinese)
    [9] 赵润超. 燃气轮机拉杆转子模型等效约化方法及动力学分析[D]. 哈尔滨: 哈尔滨工业大学, 2020.

    ZHAO Runchao. Model equivalent reduction method and dynamic analysis of rod-fastening gas turbine rotor[D]. Harbin: Harbin Institute of Technology, 2020. (in Chinese)
    [10] 李玲,蔡安江,蔡力钢,等. 螺栓结合面微观接触模型[J]. 机械工程学报,2016,52(7): 205-212. doi: 10.3901/JME.2016.07.205

    LI Ling,CAI Anjiang,CAI Ligang,et al. Micro-contact model of bolted-joint interface[J]. Journal of Mechanical Engineering,2016,52(7): 205-212. (in Chinese) doi: 10.3901/JME.2016.07.205
    [11] LIN L P,LIN J F. An elastoplastic microasperity contact model for metallic materials[J]. Journal of Tribology,2005,127(3): 666-672. doi: 10.1115/1.1843830
    [12] VAKIS A I. Asperity interaction and substrate deformation in statistical summation models of contact between rough surfaces[J]. Journal of Applied Mechanics,2014,81(4): 041012-1-041012-10. doi: 10.1115/1.4025413
    [13] KOGUT L,ETSION I. Elastic-plastic contact analysis of a sphere and a rigid flat[J]. Journal of Applied Mechanics,2002,69(5): 657-662. doi: 10.1115/1.1490373
    [14] 田红亮. 机械结构固定结合部虚拟材料的动力学建模[D]. 武汉: 华中科技大学, 2011.

    TIAN Hongliang. Dynamic modeling on fixed joint interface virtual material in mechanical structure[D]. Wuhan: Huazhong University of Science and Technology, 2011. (in Chinese)
    [15] 李辉光,刘恒,虞烈. 粗糙机械结合面的接触刚度研究[J]. 西安交通大学学报,2011,45(6): 69-74.

    LI Huiguang,LIU Heng,YU Lie. Contact stiffness of rough mechanical joint surface[J]. Journal of Xi’an Jiaotong University,2011,45(6): 69-74. (in Chinese)
    [16] 赵问银,张家忠,周成武. 大型离心叶轮振动模态局部化特性研究[J]. 应用力学学报,2012,29(6): 699-704, 775.

    ZHAO Wenyin,ZHANG Jiazhong,ZHOU Chengwu. Study on the vibration localization in the centrifugal Impeller with periodic structures[J]. Chinese Journal of Applied Mechanics,2012,29(6): 699-704, 775. (in Chinese)
    [17] 祝梦洁,张锁怀,丁鑫. 分布式拉杆转子预紧失谐对固有频率的影响[J]. 机床与液压,2020,48(13): 17-21. doi: 10.3969/j.issn.1001-3881.2020.13.004

    ZHU Mengjie,ZHANG Suohuai,DING Xin. Effects of pre-tightening detuning on the natural frequency of distributed tie-rod rotor[J]. Machine Tool & Hydraulics,2020,48(13): 17-21. (in Chinese) doi: 10.3969/j.issn.1001-3881.2020.13.004
    [18] ZHANG Hongyuan,YUAN Huiqun,YANG Wenjun,et al. Research on vibration localization of mistuned bladed disk system[J]. Journal of Vibroengineering,2017,19(5): 3296-3312. doi: 10.21595/jve.2017.17822
    [19] 王建军,于长波,姚建尧,等. 失谐叶盘振动模态局部化定量描述方法[J]. 推进技术,2009,30(4): 457-461, 473.

    WANG Jianjun,YU Changbo,YAO Jianyao,et al. Vibratory mode localization factors of mistuned bladed disk assemblies[J]. Journal of Propulsion Technology,2009,30(4): 457-461, 473. (in Chinese)
  • 加载中
图(18) / 表(5)
计量
  • 文章访问数:  140
  • HTML浏览量:  48
  • PDF量:  59
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-20
  • 网络出版日期:  2023-08-14

目录

    /

    返回文章
    返回