Effects of slot nozzle geometry on the cooling characteristics of swirl flow
-
摘要:
为了寻求更优的透平叶片前缘冷却结构,建立了条缝喷嘴旋流冷却结构,并选用标准
k -ε 湍流模型进行数值计算,探究了条缝喷嘴几何结构对旋流冷却流动与换热特性的影响。在所研究雷诺数范围内,条缝喷嘴旋流冷却靶面换热流向不均匀度比离散结构小67.8%~71.9%;条缝喷嘴旋流冷却靶面换热强度在喷嘴范围内沿流向呈上升趋势;通过改变条缝喷嘴截面斜度角可以有效影响靶面换热分布,当斜度角为0.24 rad时,换热强度沿流向基本呈均匀分布,超过此值,则呈下降趋势;条缝喷嘴高度对旋流冷却换热均匀性影响较为明显,当喷嘴高度是水力直径3.41倍时,综合性能最好;此外,还探究了条缝喷嘴宽度对旋流冷却的影响。Abstract:To find the optimized cooling structure of turbine blade leading edge, the swirl cooling structure with slot nozzle was established and numerical simulations with the standard
k -ε turbulence model were adopted to survey the influence of slot nozzle on the flow and heat transfer characteristics of swirl cooling. Within the studied range of Reynolds number, the non-uniformity of heat transfer for the slot nozzle swirl cooling was 67.8%−71.9% lower than that of the disperse jet swirl cooling along the axial direction. Within the range of the nozzle, the heat transfer intensity of the slot nozzle swirl cooling showed an upward trend along the flow direction. The heat transfer of the bottom surface could be effectively influenced by the inclination angle of the cross-section trapezoid of slot nozzle. When the inclination angle of the cross-section trapezoid was 0.24rad, the heat transfer intensity was uniformly distributed, and showed a downward trend when the inclination angle of the cross-section trapezoid exceeded 0.24rad. Once the angle was larger than 0.24rad, the heat transfer intensity decreased. The slot nozzle height had important effect on the uniformity of heat transfer of swirl cooling and the comprehensive performance was obtained when the height was 3.41 times of the diameter. In addition, the influence of width of the slot nozzle on the swirl cooling was explored.-
Key words:
- gas turbine /
- leading edge of blade /
- slot nozzle /
- swirl cooling /
- flow and heat transfer
-
表 1 不同方案条缝喷嘴几何参数
Table 1. Geometric parameters of slot nozzles for different cases
mm 方案 a b c h 1 1.93 1.93 390 200 2 3.85 3.85 390 200 3 5.78 5.78 390 200 4 7.7 7.7 390 200 5 4.4 3.3 390 200 6 4.675 3.025 390 200 7 4.95 2.75 390 200 8 5.5 2.2 390 200 9 3.85 3.85 390 5 10 3.85 3.85 390 15 11 3.85 3.85 390 26 12 3.85 3.85 390 52 13 3.85 3.85 390 104 表 2 不同Re下流动和传热参数
Table 2. Flow and heat transfer parameters under different Reynolds number
喷嘴 参数 Re 28510 34000 39500 45000 50500 离散
喷嘴Nua 270.2 309.3 346.2 380.2 413.7 f 0.9901 0.9777 0.9667 0.9576 0.9503 j 1.1175 1.1047 1.0925 1.0764 1.0643 σ 61.53 66.10 69.50 72.44 74.54 条缝
喷嘴Nua 264.5 304.6 341.3 372.1 396.0 f 1.4320 1.3790 1.3360 1.2910 1.2630 j 0.9673 0.9700 0.9669 0.9259 0.9266 σ 17.29 19.55 21.91 22.56 24.01 表 3 不同斜度角流动和换热参数
Table 3. Flow and heat transfer performance of different slope angle
参数 喷嘴斜度角/rad 0 0.16 0.24 0.32 0.48 Nua 264.5 266.2 267.1 267.6 269.1 f 1.432 1.436 1.431 1.431 1.421 j 0.9673 0.9726 0.9770 0.9789 0.9866 σ 17.29 7.31 3.51 3.67 11.53 表 4 不同高度条缝喷嘴流动和换热参数
Table 4. Flow and heat transfer parameters of slot nozzle under different heights
参数 喷嘴高径比 0.66 1.97 3.41 6.82 13.64 26.23 Nua 267.2 264.1 263.5 263.1 263.9 264.5 f 0.7539 0.8012 0.8505 0.9458 1.148 1.4320 j 1.2102 1.1721 1.1464 1.1048 1.0389 0.9673 σ 15.46 13.68 12.29 13.68 15.93 17.29 -
[1] 葛绍岩,刘登,徐靖中,等. 涡轮叶片气膜冷却的研究[J]. 航空动力学报,1989,4(4): 363-367,392. doi: 10.13224/j.cnki.jasp.1989.04.015GE Shaoyan,LIU Deng,XU Jingzhong,et al. Research on film-cooling of turbine blade[J]. Journal of Aerospace Power,1989,4(4): 363-367,392. (in Chinese) doi: 10.13224/j.cnki.jasp.1989.04.015 [2] 蒋雪辉,赵晓路. 非定常尾迹对叶片头部气膜冷却的影响[J]. 航空动力学报,2005,20(4): 540-544. doi: 10.13224/j.cnki.jasp.2005.04.003JIANG Xuehui,ZHAO Xiaolu. The effect of unsteady wake on leading edge film cooling[J]. Journal of Aerospace Power,2005,20(4): 540-544. (in Chinese) doi: 10.13224/j.cnki.jasp.2005.04.003 [3] KREITH F,MARGOLIS D. Heat transfer and friction in turbulent vortex flow[J]. Applied Scientific Research, Section A,1959,8(1): 457-473. doi: 10.1007/BF00411769 [4] HAY N,WEST P D. Heat transfer in free swirling flow in a pipe[J]. Journal of Heat Transfer,1975,97(3): 411-416. doi: 10.1115/1.3450390 [5] GLEZER B, MOON H, O’CONNELL T. A novel technique for the internal blade cooling[C]//International Gas Turbine and Aeroengine Congress & Exhibition, Birmineham, UK: ASME, 1996, 181: 1-10. [6] 刘高文,薛彪,彭力,等. 叶片前缘旋流和常规冲击对比数值研究[J]. 推进技术,2011,32(4): 576-580,585. doi: 10.13675/j.cnki.tjjs.2011.04.021LIU Gaowen,XUE Biao,PENG Li,et al. Numerical investigation on difference between blade leading edge vortex and normal impingement cooling[J]. Journal of Propulsion Technology,2011,32(4): 576-580,585. (in Chinese) doi: 10.13675/j.cnki.tjjs.2011.04.021 [7] FAN Xiaojun,LI Liang,ZOU Jiasheng,et al. Cooling methods for gas turbine blade leading edge: comparative study on impingement cooling, vortex cooling and double vortex cooling[J]. International Communications in Heat and Mass Transfer,2019,100: 133-145. doi: 10.1016/j.icheatmasstransfer.2018.12.017 [8] LING J P C W, IRELAND P T, HARVEY N W. Measurement of heat transfer coefficient distributions and flow field in a model of a turbine blade cooling passage with tangential injection[R]. ASME Paper GT2006-90352, 2008. [9] JIANG Yuting,ZHENG Qun,YUE Guoqiang,et al. Numerical investigation on blade leading edge high-efficiency swirl and impingement phase transfer cooling mechanism[J]. Numerical Heat Transfer, Part A: Applications,2016,69(1): 67-84. doi: 10.1080/10407782.2015.1052294 [10] FAWZY H,ZHENG Qun,AHMAD N,et al. Optimization of a swirl with impingement compound cooling unit for a gas turbine blade leading edge[J]. Energies,2020,13(1): 1-23. [11] FAWZY H,ZHENG Qun,AHMAD N. Effect of slot area ratio and slot angle on swirl cooling in a gas turbine blade leading edge[J]. Journal of Aerospace Engineering,2020,33(5): 4020046.1-4020046.13. [12] WANG Nian,HAN J C. Swirl impinging cooling on an airfoil leading edge model at large Reynolds number[J]. Journal of Thermal Science and Engineering Applications,2019,11(3): 031006.1-031006.8. [13] 何娟,邓清华,高铁瑜,等. 周向角和直径比对切向双旋流冷却流动与传热特性的作用机理[J]. 西安交通大学学报,2020,54(9): 89-99.HE Juan,DENG Qinghua,GAO Tieyu,et al. Effects of circumferential angle and diameter ratio on the flow and heat transfer characteristics of double swirl cooling[J]. Journal of Xi’an Jiaotong University,2020,54(9): 89-99. (in Chinese) [14] LIN Gang,KUSTERER K,BOHN D,et al. Investigation on heat transfer enhancement and pressure loss of double swirl chambers cooling[J]. Propulsion and Power Research,2013,2(3): 177-187. doi: 10.1016/j.jppr.2013.07.003 [15] MOUSAVI S M,GHADIMI B,KOWSARY F. Numerical study on the effects of multiple inlet slot configurations on swirl cooling of a gas turbine blade leading edge[J]. International Communications in Heat and Mass Transfer,2018,90: 34-43. doi: 10.1016/j.icheatmasstransfer.2017.10.012 [16] YAO Ran,SU Hang,CHENG Yun,et al. Numerical investigation of a novel multistage swirl cooling conception in blade leading edge of gas turbine[J]. International Journal of Thermal Sciences,2022,172: 107269.1-107269.18. [17] WANG Jiefeng,DU Changhe,WU Fan,et al. Investigation of the vortex cooling flow and heat transfer behavior in variable cross-section vortex chambers for gas turbine blade leading edge[J]. International Communications in Heat and Mass Transfer,2019,108: 104301.1-104301.13. [18] LIU Yuyang,RAO Yu,WEIGAND B. Heat transfer and pressure loss characteristics in a swirl cooling tube with dimples on the tube inner surface[J]. International Journal of Heat and Mass Transfer,2019,128: 54-65. doi: 10.1016/j.ijheatmasstransfer.2018.08.097 [19] ZHOU J F, WANG X J, LI J, et al. Effects of impinging hole shapes on double swirl cooling performance at gas turbine blade leading edge[C]//Proceedings of ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition, Oslo, Norway: ASME, 2018: 1-13. -