留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

条缝喷嘴几何结构对旋流冷却特性的影响

马永乐 成克用 淮秀兰

马永乐, 成克用, 淮秀兰. 条缝喷嘴几何结构对旋流冷却特性的影响[J]. 航空动力学报, 2024, 39(1):20210385 doi: 10.13224/j.cnki.jasp.20210385
引用本文: 马永乐, 成克用, 淮秀兰. 条缝喷嘴几何结构对旋流冷却特性的影响[J]. 航空动力学报, 2024, 39(1):20210385 doi: 10.13224/j.cnki.jasp.20210385
MA Yongle, CHENG Keyong, HUAI Xiulan. Effects of slot nozzle geometry on the cooling characteristics of swirl flow[J]. Journal of Aerospace Power, 2024, 39(1):20210385 doi: 10.13224/j.cnki.jasp.20210385
Citation: MA Yongle, CHENG Keyong, HUAI Xiulan. Effects of slot nozzle geometry on the cooling characteristics of swirl flow[J]. Journal of Aerospace Power, 2024, 39(1):20210385 doi: 10.13224/j.cnki.jasp.20210385

条缝喷嘴几何结构对旋流冷却特性的影响

doi: 10.13224/j.cnki.jasp.20210385
基金项目: 工信部国家科技重大专项 (2017-Ⅲ-0003-0027)
详细信息
    作者简介:

    马永乐(1993-),男,硕士生,主要从事燃气轮机透平叶片流动传热研究

    通讯作者:

    成克用(1984-),男,高级工程师,博士,主要从事高效紧凑式换热器及燃机部件高温冷却研究。E-mail:chengkeyong@iet.cn

  • 中图分类号: V231.1

Effects of slot nozzle geometry on the cooling characteristics of swirl flow

  • 摘要:

    为了寻求更优的透平叶片前缘冷却结构,建立了条缝喷嘴旋流冷却结构,并选用标准k-ε湍流模型进行数值计算,探究了条缝喷嘴几何结构对旋流冷却流动与换热特性的影响。在所研究雷诺数范围内,条缝喷嘴旋流冷却靶面换热流向不均匀度比离散结构小67.8%~71.9%;条缝喷嘴旋流冷却靶面换热强度在喷嘴范围内沿流向呈上升趋势;通过改变条缝喷嘴截面斜度角可以有效影响靶面换热分布,当斜度角为0.24 rad时,换热强度沿流向基本呈均匀分布,超过此值,则呈下降趋势;条缝喷嘴高度对旋流冷却换热均匀性影响较为明显,当喷嘴高度是水力直径3.41倍时,综合性能最好;此外,还探究了条缝喷嘴宽度对旋流冷却的影响。

     

  • 图 1  旋流几何结构模型(单位:mm)

    Figure 1.  Geometrical model of swirl structure (unit: mm)

    图 2  条缝旋流冷却模型网格

    Figure 2.  Mesh of slot swirl cooling model

    图 3  旋流室XY截面流线图(Re=28510)

    Figure 3.  Streamline contour at XY section of swirling chamber (Re=28510)

    图 4  旋流室YZ截面流线图和速度云图(Re=28510)

    Figure 4.  Streamline and velocity contours at YZ section of swirling chamber (Re=28510)

    图 5  旋流室XY截面温度云图(Re=28510)

    Figure 5.  Temperature contour of swirl chamber at XY section (Re=28510 )

    图 6  两种旋流结构Nu云图(Re=28510)

    Figure 6.  Nu contours of two swirling configurations (Re=28510)

    图 7  不同条缝喷嘴宽度条缝喷嘴出口流量分布(Re=28510)

    Figure 7.  Mass flow distribution of the slot nozzle outlet under different slot nozzle widths (Re=28510)

    图 8  不同条缝喷嘴宽度Nu云图(Re=28510)

    Figure 8.  Distributions contour of Nu for different slot nozzle widths (Re=28510)

    图 9  不同条缝宽度fRe变化曲线

    Figure 9.  Variation curves of friction factor f with the Re for different slot widths

    图 10  不同条缝宽度NuaRe变化曲线

    Figure 10.  Variation curves of Nua with the Re for different slot widths

    图 11  不同条缝宽度jRe变化曲线

    Figure 11.  Variation curves of j of different nozzle widths with the Re

    图 12  不同斜度角喷嘴出口处质量流量沿流向分布

    Figure 12.  Mass flux distribution along the flow direction at the nozzle outlet of different slope angle

    图 13  不同斜度角周向平均努塞尔数沿流向分布

    Figure 13.  Circumferential averaged Nusselt number distributions of different slope angle along the flow direction

    表  1  不同方案条缝喷嘴几何参数

    Table  1.   Geometric parameters of slot nozzles for different cases mm

    方案abch
    11.931.93390200
    23.853.85390200
    35.785.78390200
    47.77.7390200
    54.43.3390200
    64.6753.025390200
    74.952.75390200
    85.52.2390200
    93.853.853905
    103.853.8539015
    113.853.8539026
    123.853.8539052
    133.853.85390104
    下载: 导出CSV

    表  2  不同Re下流动和传热参数

    Table  2.   Flow and heat transfer parameters under different Reynolds number

    喷嘴参数 Re
    2851034000395004500050500
    离散
    喷嘴
    Nua270.2309.3346.2380.2413.7
    f0.99010.97770.96670.95760.9503
    j1.11751.10471.09251.07641.0643
    σ61.5366.1069.5072.4474.54
    条缝
    喷嘴
    Nua264.5304.6341.3372.1396.0
    f1.43201.37901.33601.29101.2630
    j0.96730.97000.96690.92590.9266
    σ17.2919.5521.9122.5624.01
    下载: 导出CSV

    表  3  不同斜度角流动和换热参数

    Table  3.   Flow and heat transfer performance of different slope angle

    参数喷嘴斜度角/rad
    00.160.240.320.48
    Nua264.5266.2267.1267.6269.1
    f1.4321.4361.4311.4311.421
    j0.96730.97260.97700.97890.9866
    σ17.297.313.513.6711.53
    下载: 导出CSV

    表  4  不同高度条缝喷嘴流动和换热参数

    Table  4.   Flow and heat transfer parameters of slot nozzle under different heights

    参数 喷嘴高径比
    0.661.973.416.8213.6426.23
    Nua267.2264.1263.5263.1263.9264.5
    f0.75390.80120.85050.94581.1481.4320
    j1.21021.17211.14641.10481.03890.9673
    σ15.4613.6812.2913.6815.9317.29
    下载: 导出CSV
  • [1] 葛绍岩,刘登,徐靖中,等. 涡轮叶片气膜冷却的研究[J]. 航空动力学报,1989,4(4): 363-367,392. doi: 10.13224/j.cnki.jasp.1989.04.015

    GE Shaoyan,LIU Deng,XU Jingzhong,et al. Research on film-cooling of turbine blade[J]. Journal of Aerospace Power,1989,4(4): 363-367,392. (in Chinese) doi: 10.13224/j.cnki.jasp.1989.04.015
    [2] 蒋雪辉,赵晓路. 非定常尾迹对叶片头部气膜冷却的影响[J]. 航空动力学报,2005,20(4): 540-544. doi: 10.13224/j.cnki.jasp.2005.04.003

    JIANG Xuehui,ZHAO Xiaolu. The effect of unsteady wake on leading edge film cooling[J]. Journal of Aerospace Power,2005,20(4): 540-544. (in Chinese) doi: 10.13224/j.cnki.jasp.2005.04.003
    [3] KREITH F,MARGOLIS D. Heat transfer and friction in turbulent vortex flow[J]. Applied Scientific Research, Section A,1959,8(1): 457-473. doi: 10.1007/BF00411769
    [4] HAY N,WEST P D. Heat transfer in free swirling flow in a pipe[J]. Journal of Heat Transfer,1975,97(3): 411-416. doi: 10.1115/1.3450390
    [5] GLEZER B, MOON H, O’CONNELL T. A novel technique for the internal blade cooling[C]//International Gas Turbine and Aeroengine Congress & Exhibition, Birmineham, UK: ASME, 1996, 181: 1-10.
    [6] 刘高文,薛彪,彭力,等. 叶片前缘旋流和常规冲击对比数值研究[J]. 推进技术,2011,32(4): 576-580,585. doi: 10.13675/j.cnki.tjjs.2011.04.021

    LIU Gaowen,XUE Biao,PENG Li,et al. Numerical investigation on difference between blade leading edge vortex and normal impingement cooling[J]. Journal of Propulsion Technology,2011,32(4): 576-580,585. (in Chinese) doi: 10.13675/j.cnki.tjjs.2011.04.021
    [7] FAN Xiaojun,LI Liang,ZOU Jiasheng,et al. Cooling methods for gas turbine blade leading edge: comparative study on impingement cooling, vortex cooling and double vortex cooling[J]. International Communications in Heat and Mass Transfer,2019,100: 133-145. doi: 10.1016/j.icheatmasstransfer.2018.12.017
    [8] LING J P C W, IRELAND P T, HARVEY N W. Measurement of heat transfer coefficient distributions and flow field in a model of a turbine blade cooling passage with tangential injection[R]. ASME Paper GT2006-90352, 2008.
    [9] JIANG Yuting,ZHENG Qun,YUE Guoqiang,et al. Numerical investigation on blade leading edge high-efficiency swirl and impingement phase transfer cooling mechanism[J]. Numerical Heat Transfer, Part A: Applications,2016,69(1): 67-84. doi: 10.1080/10407782.2015.1052294
    [10] FAWZY H,ZHENG Qun,AHMAD N,et al. Optimization of a swirl with impingement compound cooling unit for a gas turbine blade leading edge[J]. Energies,2020,13(1): 1-23.
    [11] FAWZY H,ZHENG Qun,AHMAD N. Effect of slot area ratio and slot angle on swirl cooling in a gas turbine blade leading edge[J]. Journal of Aerospace Engineering,2020,33(5): 4020046.1-4020046.13.
    [12] WANG Nian,HAN J C. Swirl impinging cooling on an airfoil leading edge model at large Reynolds number[J]. Journal of Thermal Science and Engineering Applications,2019,11(3): 031006.1-031006.8.
    [13] 何娟,邓清华,高铁瑜,等. 周向角和直径比对切向双旋流冷却流动与传热特性的作用机理[J]. 西安交通大学学报,2020,54(9): 89-99.

    HE Juan,DENG Qinghua,GAO Tieyu,et al. Effects of circumferential angle and diameter ratio on the flow and heat transfer characteristics of double swirl cooling[J]. Journal of Xi’an Jiaotong University,2020,54(9): 89-99. (in Chinese)
    [14] LIN Gang,KUSTERER K,BOHN D,et al. Investigation on heat transfer enhancement and pressure loss of double swirl chambers cooling[J]. Propulsion and Power Research,2013,2(3): 177-187. doi: 10.1016/j.jppr.2013.07.003
    [15] MOUSAVI S M,GHADIMI B,KOWSARY F. Numerical study on the effects of multiple inlet slot configurations on swirl cooling of a gas turbine blade leading edge[J]. International Communications in Heat and Mass Transfer,2018,90: 34-43. doi: 10.1016/j.icheatmasstransfer.2017.10.012
    [16] YAO Ran,SU Hang,CHENG Yun,et al. Numerical investigation of a novel multistage swirl cooling conception in blade leading edge of gas turbine[J]. International Journal of Thermal Sciences,2022,172: 107269.1-107269.18.
    [17] WANG Jiefeng,DU Changhe,WU Fan,et al. Investigation of the vortex cooling flow and heat transfer behavior in variable cross-section vortex chambers for gas turbine blade leading edge[J]. International Communications in Heat and Mass Transfer,2019,108: 104301.1-104301.13.
    [18] LIU Yuyang,RAO Yu,WEIGAND B. Heat transfer and pressure loss characteristics in a swirl cooling tube with dimples on the tube inner surface[J]. International Journal of Heat and Mass Transfer,2019,128: 54-65. doi: 10.1016/j.ijheatmasstransfer.2018.08.097
    [19] ZHOU J F, WANG X J, LI J, et al. Effects of impinging hole shapes on double swirl cooling performance at gas turbine blade leading edge[C]//Proceedings of ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition, Oslo, Norway: ASME, 2018: 1-13.
  • 加载中
图(13) / 表(4)
计量
  • 文章访问数:  23
  • HTML浏览量:  7
  • PDF量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-21
  • 网络出版日期:  2023-10-16

目录

    /

    返回文章
    返回