留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

含铝固体复合推进剂颗粒团聚现象

秦文瑾 邵宇 王利坡 齐观超 严俊 娄永春 赵瑜

秦文瑾, 邵宇, 王利坡, 等. 含铝固体复合推进剂颗粒团聚现象[J]. 航空动力学报, 2023, 38(12):2912-2918 doi: 10.13224/j.cnki.jasp.20210388
引用本文: 秦文瑾, 邵宇, 王利坡, 等. 含铝固体复合推进剂颗粒团聚现象[J]. 航空动力学报, 2023, 38(12):2912-2918 doi: 10.13224/j.cnki.jasp.20210388
QIN Wenjin, SHAO Yu, WANG Lipo, et al. Agglomeration phenomenon of aluminized solid composite propellant particles[J]. Journal of Aerospace Power, 2023, 38(12):2912-2918 doi: 10.13224/j.cnki.jasp.20210388
Citation: QIN Wenjin, SHAO Yu, WANG Lipo, et al. Agglomeration phenomenon of aluminized solid composite propellant particles[J]. Journal of Aerospace Power, 2023, 38(12):2912-2918 doi: 10.13224/j.cnki.jasp.20210388

含铝固体复合推进剂颗粒团聚现象

doi: 10.13224/j.cnki.jasp.20210388
基金项目: 国家自然科学基金(51506118)
详细信息
    作者简介:

    秦文瑾(1981-),男,副教授、硕士生导师,博士,主要从事先进燃烧技术研究

  • 中图分类号: V435

Agglomeration phenomenon of aluminized solid composite propellant particles

  • 摘要:

    含Al固体复合推进剂在燃烧过程中,燃烧表面存在Al颗粒团聚现象,其对火箭发动机性能产生重要影响。通过分子动力学算法建立固体复合推进剂三维颗粒微观模型,实现了模拟三维空间内AP颗粒和Al颗粒的随机分布特征。并建立了颗粒的团聚模型,分析研究Al颗粒在随机填充模型中的团聚现象,得到了不同的临界分离距离下Al颗粒粒径分布规律,并将之与实验数据进行对比,最终总结出了合适的临界分离距离与Al颗粒直径的经验公式。然后总结出了Al颗粒在气固交界面发生团聚后粒径的分布规律,设计了Al颗粒在气固交界面的Rosin-Rammler概率分布函数,分析得到其均匀性系数与特征系数分别为1.4453与86.49,可用于数值模拟计算固体燃料燃烧面退移过程中表面Al颗粒喷射的初始粒径。

     

  • 图 1  团聚流程图

    Figure 1.  Flow chart of agglomeration

    图 2  铝化AP/HTPB复合推进剂的随机填充模型

    Figure 2.  Random filling model of aluminized AP/HTPB composite propellant

    图 3  Al颗粒粒径分布图

    Figure 3.  Al particle size distribution diagram

    图 4  Sd=8 μm时铝颗粒粒径分布与实验数据对比图

    Figure 4.  Comparison of aluminum particle size distribution and experimental data when Sd=8 μm

    图 5  临界分离距离随Al颗粒初始粒径变化分布规律

    Figure 5.  Distribution of critical separation distance with the initial particle size of Al particles

    图 6  Al颗粒粒径分布图

    Figure 6.  Al particle size distribution diagram

    图 7  线性拟合

    Figure 7.  Linear fit

    图 8  累积分布函数随颗粒粒径的变化规律

    Figure 8.  Cumulative distribution function changes with particle size

    表  1  含铝复合推进剂配方组分

    Table  1.   Compositin of Al/AP/HTPB formulation

    参数HTPBAPAl
    质量分数/%146818
    密度/(g/cm30.951.952.70
    体积分数/%26.1161.9911.90
    下载: 导出CSV
  • [1] LUBACHEVSKY B D,STILLINGER F H. Geometric properties of random disk packings[J]. Journal of Statistical Physics,1990,60(5/6): 561-583.
    [2] CRUMP J E,PRENTICE J L,KRAEUTLE K J. Role of the scanning electron microscope in the study of solid propellant combustion: Ⅱ behavior of metal additivest[J]. Combustion Science and Technology,1969,1(3): 205-223. doi: 10.1080/00102206908952201
    [3] 刘鑫. 基于光学拍摄技术的含铝固体推进剂燃面处铝团聚研究[D]. 西安: 西北工业大学, 2016.

    LIU Xin. Investigation on aluminum agglomeration on the burning surface of solid propellants by optical observation technology[D]. Xi’an: Northwestern Polytechnical University, 2016. (in Chinese)
    [4] KNOTT G M,JACKSON T L,BUCKMASTER J. Random packing of heterogeneous propellants[J]. AIAA Journal,2001,39(4): 678-686. doi: 10.2514/2.1361
    [5] KOCHEVETS S,BUCKMASTER J,JACKSON T L,et al. Random packs and their use in modeling heterogeneous solid propellant combustion[J]. Journal of Propulsion and Power,2001,17(4): 883-891. doi: 10.2514/2.5820
    [6] HABU H, SHIMADA T, HASEGAWA H. Study on Al/Al2O3 agglomeration particle size distributions for solid propellants[R]. AIAA 2006-5249, 2006.
    [7] JACKSON T, NAJJAR F, BUCKMASTER J. An aluminum injection model based on random packs for solid propellant rocket motor simulations[R]. AIAA 2004-4042, 2004.
    [8] WIDENER J, LIANG Y, BECKSTEAD M. Aluminum combustion modeling in solid propellant environments[C]//35th Joint Propulsion Conference and Exhibit. Los Angeles, US: AIAA, 1999: 577-592.
    [9] PRICE E W. Combustion of metalized propellants[J]. Progress in Astronautics and Aeronautics,1984,90(9): 479-513.
    [10] JACKSON T L, BUCKMASTER J, CAMPBELL M, et al. The burning of 3D random-pack heterogeneous propellants[R]. Salt Lake City, US: 37th Joint Propulsion Conference and Exhibit, 2001
    [11] MELCHER J C,KRIER H,BURTON R L. Burning aluminum particles inside a laboratory-scale solid rocket motor[J]. Journal of Propulsion and Power,2002,18(3): 631-640. doi: 10.2514/2.5977
    [12] PARK K S, XIA G, HEISTER S D. Modeling two-phase flow with stochastic coalescence/breakage model[R]. AIAA 2010-6578, 2010.
    [13] NAJJAR F M,FERRY J P,HASELBACHER A,et al. Simulations of solid-propellant rockets: effects of aluminum droplet size distribution[J]. Journal of Spacecraft and Rockets,2006,43(6): 1258-1270. doi: 10.2514/1.17326
    [14] SUZUKI S, CHIBA M. Combustion efficiency of aluminized propellant[C]//Proceedings of the 25th Joint Propulsion Conference and Exhibit. Monterey, US: AIAA, 1989: 2309-2317.
    [15] 赵银,田德佘,江瑜. 含铝复合固体推进剂的燃烧模拟计算[J]. 航空动力学报,1987,2(2): 147-152,188-189. doi: 10.13224/j.cnki.jasp.1987.02.013

    ZHAO Yin,TIAN Deyu,JIANG Yu. Modeling calculations for ap/ai/htpb composite solid propellant combustion[J]. Journal of Aerospace Power,1987,2(2): 147-152,188-189. (in Chinese) doi: 10.13224/j.cnki.jasp.1987.02.013
    [16] 史佩,李高春,王玉峰,等. 复合推进剂颗粒填充模型的分子动力学模拟方法[J]. 计算机与应用化学,2007,24(5): 665-668. doi: 10.3969/j.issn.1001-4160.2007.05.023

    SHI Pei,LI Gaochun,WANG Yufeng,et al. Generation of composite propellant filler packing model by molecular dynamics method[J]. Computers and Applied Chemistry,2007,24(5): 665-668. (in Chinese) doi: 10.3969/j.issn.1001-4160.2007.05.023
    [17] COHEN N S. A pocket model for aluminum agglomeration in composite propellants[J]. AIAA Journal,1983,21(5): 720-725. doi: 10.2514/3.8139
    [18] VERMA S,RAMAKRISHNA P A. Effect of specific surface area of aluminum on composite solid propellant burning[J]. Journal of Propulsion and Power,2013,29(5): 1200-1206. doi: 10.2514/1.B34772
    [19] 王志新. 数字全息技术用于固体推进剂铝燃烧测量实验研究[D]. 西安: 西北工业大学, 2018.

    WANG Zhixin. Experimental research on measurement of aluminum combustion in solid propellant by using digital holography[D]. Xi’an: Northwestern Polytechnical University, 2018. (in Chinese)
    [20] MILLER R. Effects of particle size on reduced smoke propellant ballistics[C]// Proceedings of the 18th Joint Propulsion Conference and Exhibit. Cleveland, US: AIAA, 1982: 1906-1914.
    [21] JIN Bingning,WANG Zhixin,XU Geng,et al. Three-dimensional spatial distributions of agglomerated particles on and near the burning surface of aluminized solid propellant using morphological digital in-line holography[J]. Aerospace Science and Technology,2020,106: 106066.1-106066.14.
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  142
  • HTML浏览量:  72
  • PDF量:  50
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-23
  • 网络出版日期:  2023-09-12

目录

    /

    返回文章
    返回