Stability of two types of supersonic inlets during a level deceleration flight
-
摘要:
通过飞行试验,研究了一种二元斜板式及蚌式超声速进气道在马赫数1.5快收发动机油门平飞减速至马赫数为1.05过程中的畸变及稳定性水平。对比表明:减速过程中二元进气道总压畸变、稳定性裕度均随发动机换算转速的下降减小后保持稳定,而蚌式进气道畸变先上升再下降后保持稳定,稳定性裕度先下降再略微上升后保持稳定。减速过程前半段,蚌式进气道畸变更大,二元进气道稳定性裕度下降更快;减速过程后半段,两型进气道畸变水平接近,稳定性裕度均较低。分析也表明,仅使用流量系数的相对差值计算的进气道稳定裕度反映的进气道流通能力信息比使用总压恢复系数与流量系数之比的相对差值更全面,推荐采用前者作为进气道稳定性裕度评价指标。
Abstract:The distortion and stability level of a 2-D ramp and a bump supersonic inlet during a level deceleration flight from Mach number 1.5 with the throttle lever pulled in rapidly to Mach number 1.05 were investigated through flight test. Comparison showed that during the deceleration flight, both total pressure distortion and stability margin of the 2-D inlet declined with the decrease of the engine's conversion speed and then kept stable, while distortion of the bump inlet rose first and then declined and then kept stable, and the stability margin first decreased and then increased slightly and then kept stable. In the first half of the deceleration process, distortion of the bump inlet was higher and stability margin of the 2-D inlet decreased more rapidly, but in the second half of the process, distortion of the two types of inlet was close and stability margin was low. Also the analysis revealed that the inlet stability margin calculated only with flow coefficient actually reflected more information about the flow capacity of the inlet other than that calculated with total pressure recovery coefficient and flow coefficient, so the former was recommended to be used as the evaluation index of inlet stability margin.
-
Key words:
- bump inlet /
- inlet surge /
- inlet distortion /
- flow coefficient /
- stability margin
-
-
[1] 符小刚,李俊浩,许艳芝. 带辅助进气的二元超声速进气道低速特性[J]. 实验流体力学,2020,34(5): 36-43.FU Xiaogang,LI Junhao,XU Yanzhi. Characteristic of 2-D supersonic inlet with auxiliary intake at low flight speed[J]. Journal of Experiments in Fluid Mechanics,2020,34(5): 36-43. (in Chinese) [2] MIKI H, KAMEDA M, WATANABE Y. Low drag design and aerodynamic performance evaluation of supersonic air inlet[R]. AIAA-2014-3798, 2014. [3] DENNER B W, MCCALLUM B, TRUAX P. CFD prediction of inlet spill drag increments[R]. AIAA 98-3566, 1998. [4] CHUN K S,BURR R H. A control system concept for an axisymmetric supersonic inlet[J]. Journal of Aircraft,1969,6(4): 306-311. doi: 10.2514/3.44056 [5] 于海涛,徐伟,臧旭. 大M数飞行时进气道爆音(喘振)的机理分析与规避措施[J]. 测控技术,2018,37(B09): 269-271, 276.YU Haitao,XU Wei,ZANG Xu. Working principle and evasive measures of inlet surge in the high ma flight[J]. Measurement & Control Technology,2018,37(B09): 269-271, 276. (in Chinese) [6] SORENSEN N E,SMELTZER D B,CUBBISON R W. Study of a family of supersonic inlet systems[J]. Journal of Aircraft,1969,6(3): 184-188. doi: 10.2514/3.44033 [7] 饶彩燕,谭慧俊,张启帆. 超额定状态下二元超声速进气道的流动特性[J]. 航空动力学报,2017,32(5): 1160-1167.RAO Caiyan,TAN Huijun,ZHANG Qifan. Flow characteristics of a rectangular supersonic inlet under over-speed state[J]. Journal of Aerospace Power,2017,32(5): 1160-1167. (in Chinese) [8] 丁晨,刘猛,张继华,等. 变马赫数条件下进气道边界层吹除法数值模拟[J]. 推进技术,2013,34(10): 1310-1315.DING Chen,LIU Meng,ZHANG Jihua,et al. Numerical simulation on blowing method for controlling boundary layer interaction in supersonic inlet at different Mach number[J]. Journal of Propulsion Technology,2013,34(10): 1310-1315. (in Chinese) [9] 杜瑶,张海波. 超声速进气道正激波位置动态辨识与控制方法研究[J]. 推进技术,2018,39(4): 888-897.DU Yao,ZHANG Haibo. Research on dynamic identification and control method of normal shock position of supersonic inlet[J]. Journal of Propulsion Technology,2018,39(4): 888-897. (in Chinese) [10] 赵昊,谢旅荣,郭荣伟,等. 超声速进气道加速/减速过程起动/不起动现象研究[J]. 航空动力学报,2015,30(8): 1841-1852.ZHAO Hao,XIE Lürong,GUO Rongwei,et al. Study of start/unstart phenomenon of supersonic inlet in acceleration/deceleration process[J]. Journal of Aerospace Power,2015,30(8): 1841-1852. (in Chinese) [11] 寿圣德. 一种快速评定进气道/发动机稳态匹配工作点及稳定裕度的方法[J]. 航空学报,1987,8(10): 549-552.SHOU Shengde. A method for fast estimation of steady inlet/engine matching state and stability margin[J]. Acta Aeronautica et Astronautica Sinica,1987,8(10): 549-552. (in Chinese) [12] 赵海刚,屈霁云,史建邦,等. 高机动飞行下进气道/发动机相容性试验[J]. 航空动力学报,2010,25(9): 2077-2082.ZHAO Haigang,QU Jiyun,SHI Jianbang,et al. Filghtting test of inlet/engine compatibility during rapidly changing aircraft maneuvers[J]. Journal of Aerospace Power,2010,25(9): 2077-2082. (in Chinese) [13] 王玉峰,杨宝娥. 超声速进气道喘振的机理研究[J]. 火箭推进,2008,34(1): 17-22.WANG Yufeng,YANG Baoe. Study of the buzz mechanism of supersonic inlets[J]. Journal of Rocket Propulsion,2008,34(1): 17-22. (in Chinese) [14] 张堃元,MEIER G E A. 二元进气道非均匀超音来流试验研究[J]. 推进技术,1993,14(1): 9-15.ZHANG Kunyuan,MEIER G E A. Experimental investigation of 2-D inlet model in non-uniform supersonic flow[J]. Journal of Propulsion Technology,1993,14(1): 9-15. (in Chinese) [15] 杨应凯. 枭龙飞机Bump进气道设计[J]. 南京航空航天大学学报,2007,39(4): 449-452. doi: 10.3969/j.issn.1005-2615.2007.04.007YANG Yingkai. Design of bump inlet of thunder/JF-17 aircraft[J]. Journal of Nanjing University of Aeronautics & Astronautics,2007,39(4): 449-452. (in Chinese) doi: 10.3969/j.issn.1005-2615.2007.04.007 [16] 张堃元,余少志,彭成一. 滑流层对轴对称外压式进气道稳定性的影响[J]. 航空学报,1983,4(3): 56-62.ZHANG Kunyuan,YU Shaozhi,PENG Chengyi. Effect of a shear layer on stability of an axisymmetric external compression air intake[J]. Acta Aeronautica et Astronautica Sinica,1983,4(3): 56-62. (in Chinese) [17] 王伟,田丰光. 进气道喘振诱发因素及其可靠性分析[J]. 沈阳航空工业学院学报,2004,21(4): 12-14.WANG Wei,TIAN Fengguang. Inducing factors and its reliability analysis of the air inlet surge[J]. Journal of Shenyang Institute of Aeronautcal Engineering,2004,21(4): 12-14. (in Chinese) [18] 廉筱纯, 吴虎. 航空发动机原理[M]. 西安: 西北工业大学出版社, 2005.