Multi-component characterization of aviation kerosene and analysis of fuel soot formation
-
摘要:
选取航空煤油的多组分表征燃料Jet-A world average(JW),运用大涡模拟和详细化学反应机理相结合的方法对该表征燃料的碳烟生成过程进行了数值模拟,从碳烟前驱物的生成、碳烟颗粒的生成及氧化等过程进行了详细预测。结果表明:Dalian碳烟模型可以较好地预测定容弹内多组分航空煤油表征燃料射流燃烧的碳烟的生长特性;对于描述碳烟生成的特征量,碳烟质量的增长略微滞后于颗粒数密度的增长;碳烟空间分布主要与当量比和温度的分布相关。当量比越小且温度越高的区域,碳烟生成量则越小。
Abstract:The multi-component characterization fuel Jet-A world average (JW) of aviation kerosene was selected, and the soot generation process of the characterization fuel was numerically simulated by using large eddy simulation (LES) and detailed chemical reaction mechanism. The soot precursor generation, soot particle generation and oxidation process were predicted in detail. The results showed that the Dalian soot model can predict the spatial distribution of soot mass in the combustion chamber; for the physical quantity describing soot generation, the growth of soot quality slightly lagged behind that of particle number density; the spatial distribution of soot is mainly related to the distribution of equivalence ratio and temperature. The smaller the equivalence ratio and the higher the temperature, the smaller the amount of soot generated.
-
表 1 替代燃料模型
Table 1. Alternative fuel model
参数 数值及说明 替代燃料 JW 燃料组分
(摩尔分数)NC12H26 0.3 IC16H34 0.36 C10H18 0.246 C7H8 0.094 化学反应组分数 231 化学反应数 5741 -
[1] 曾文,刘静忱,陈潇潇,等. 正癸烷预混燃烧的详细反应动力学数值模拟[J]. 航空动力学报,2011,26(10): 2258-2266. ZENG Wen,LIU Jingchen,CHEN Xiaoxiao,et al. Detailed reaction kinetic modeling of n-decane premixed combustion[J]. Journal of Aerospace Power,2011,26(10): 2258-2266. (in Chinese doi: 10.13224/j.cnki.jasp.2011.10.019 ZENG Wen, LIU Jingchen, CHEN Xiaoxiao, et al . Detailed reaction kinetic modeling of n-decane premixed combustion[J]. Journal of Aerospace Power,2011 ,26 (10 ):2258 -2266 . (in Chinese) doi: 10.13224/j.cnki.jasp.2011.10.019[2] 马洪安. 国产RP-3航空煤油着火与燃烧特性的实验与数值研究[D]. 辽宁 大连: 大连理工大学,2016. MA Hongan. Experimental and numerical investigation on ignition and combustion characteristics of Chinese RP-3 kerosene[D]. Dalian Liaoning: Dalian University of Technology,2016. (in ChineseMA Hongan. Experimental and numerical investigation on ignition and combustion characteristics of Chinese RP-3 kerosene[D]. Dalian Liaoning: Dalian University of Technology, 2016. (in Chinese) [3] 解茂昭. 内燃机计算燃烧学[M]. 2版. 大连: 大连理工大学出版社,2005. [4] FRENKLACH M,WANG Hai. Detailed modeling of soot particle nucleation and growth[J]. Symposium (International) on Combustion,1991,23(1): 1559-1566. doi: 10.1016/S0082-0784(06)80426-1 [5] CHEN Wenmiao,SHUAI Shijin,WANG Jianxin. A soot formation embedded reduced reaction mechanism for diesel surrogate fuel[J]. Fuel,2009,88(10): 1927-1936. doi: 10.1016/j.fuel.2009.03.039 [6] JIA M,PENG Z J,XIE M Z. Numerical investigation of soot reduction potentials with diesel homogeneous charge compression ignition combustion by an improved phenomenological soot model[J]. Proceedings of the Institution of Mechanical Engineers: Part D Journal of Automobile Engineering,2009,223(3): 395-412. [7] TAO Feng,FOSTER D E,REITZ R D. Soot structure in a conventional non-premixed diesel flame[R]. SAE 2006-01-0196,2006. [8] POMRANING E,RUTLAND C J. Dynamic one-equation nonviscosity large-eddy simulation model[J]. AIAA Journal,2002,40: 689-701. doi: 10.2514/2.1701 [9] SENECAL P K,POMRANING E,RICHARDS K J,et al. Multi-dimensional modeling of direct-injection diesel spray liquid length and flame lift-off length using CFD and parallel detailed chemistry[J]. SAE Transactions,2003,112(3): 1331-1351. [10] KOOK S,PICKETT L M. Soot volume fraction and morphology of conventional,fischer-tropsch,coal-derived,and surrogate fuel at diesel conditions[J]. SAE International Journal of Fuels and Lubricants,2012,5(2): 647-664. doi: 10.4271/2012-01-0678 [11] KOOK S,PICKETT L M. Soot volume fraction and morphology of conventional and surrogate jet fuel sprays at 1000 K and 6.7 MPa ambient conditions[J]. Proceedings of the Combustion Institute,2011,33(2): 2911-2918. doi: 10.1016/j.proci.2010.05.073 [12] CHEN Xiang,KHANI E,CHEN C P. A unified jet fuel surrogate for droplet evaporation and ignition[J]. Fuel,2016,182: 284-291. doi: 10.1016/j.fuel.2016.05.114 [13] KIM D,MARTZ J,VIOLI A. A surrogate for emulating the physical and chemical properties of conventional jet fuel[J]. Combustion and Flame,2014,161(6): 1489-1498. doi: 10.1016/j.combustflame.2013.12.015 [14] CASATI R,SCHEER V,VOGT R,et al. Measurement of nucleation and soot mode particle emission from a diesel passenger car in real world and laboratory in situ dilution[J]. Atmospheric Environment,2007,41(10): 2125-2135. doi: 10.1016/j.atmosenv.2006.10.078 [15] LINDSTEDT R P,LOULOUDI S A. Joint-scalar transported PDF modeling of soot formation and oxidation[J]. Proceedings of the Combustion Institute,2005,30(1): 775-783. doi: 10.1016/j.proci.2004.08.080 [16] KENNEDY I M. Models of soot formation and oxidation[J]. Progress in Energy and Combustion Science,1997,23(2): 95-132. doi: 10.1016/S0360-1285(97)00007-5 [17] NAGLE J,STRICKLAND-CONSTABLE R F. Oxidation of carbon between 1000 – 2000 ℃[C]//Proceedings of the Fifth Conference on Carbon. Amsterdam: Elsevier,1962: 154-164. [18] NEOH K G,HOWARD J B,SAROFIM A F. Effect of oxidation on the physical structure of soot[J]. Symposium (International) on Combustion,1985,20(1): 951-957. doi: 10.1016/S0082-0784(85)80584-1 [19] KIM D,MARTZ J,VIOLI A. The relative importance of fuel oxidation chemistry and physical properties to spray ignition[J]. SAE International Journal of Fuels and Lubricants,2017,10(1): 10-21. doi: 10.4271/2017-01-0269 [20] COMBUSTION N E. Diesel search page[EB/OL]. [2020-03-13]. https://ecn.sandia.gov/ecn-data-search/.