留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

航空煤油多组分表征燃料碳烟生成分析

秦文瑾 孙智成 邵宇 景瑞雄 严俊

秦文瑾, 孙智成, 邵宇, 等. 航空煤油多组分表征燃料碳烟生成分析[J]. 航空动力学报, 2024, 39(2):20210394 doi: 10.13224/j.cnki.jasp.20210394
引用本文: 秦文瑾, 孙智成, 邵宇, 等. 航空煤油多组分表征燃料碳烟生成分析[J]. 航空动力学报, 2024, 39(2):20210394 doi: 10.13224/j.cnki.jasp.20210394
QIN Wenjin, SUN Zhicheng, SHAO Yu, et al. Multi-component characterization of aviation kerosene and analysis of fuel soot formation[J]. Journal of Aerospace Power, 2024, 39(2):20210394 doi: 10.13224/j.cnki.jasp.20210394
Citation: QIN Wenjin, SUN Zhicheng, SHAO Yu, et al. Multi-component characterization of aviation kerosene and analysis of fuel soot formation[J]. Journal of Aerospace Power, 2024, 39(2):20210394 doi: 10.13224/j.cnki.jasp.20210394

航空煤油多组分表征燃料碳烟生成分析

doi: 10.13224/j.cnki.jasp.20210394
详细信息
    作者简介:

    秦文瑾(1981-),男,副教授、硕士生导师,博士,主要从事先进燃烧技术研究

  • 中图分类号: V231.2+5

Multi-component characterization of aviation kerosene and analysis of fuel soot formation

  • 摘要:

    选取航空煤油的多组分表征燃料Jet-A world average(JW),运用大涡模拟和详细化学反应机理相结合的方法对该表征燃料的碳烟生成过程进行了数值模拟,从碳烟前驱物的生成、碳烟颗粒的生成及氧化等过程进行了详细预测。结果表明:Dalian碳烟模型可以较好地预测定容弹内多组分航空煤油表征燃料射流燃烧的碳烟的生长特性;对于描述碳烟生成的特征量,碳烟质量的增长略微滞后于颗粒数密度的增长;碳烟空间分布主要与当量比和温度的分布相关。当量比越小且温度越高的区域,碳烟生成量则越小。

     

  • 图 1  燃烧弹和实验装置示意图

    Figure 1.  Schematic diagram of combustion bomb and experimental device

    图 2  模拟定容燃烧室

    Figure 2.  Simulated constant volume combustion chamber

    图 3  喷油规律曲线

    Figure 3.  Curve of fuel injection law

    图 4  计算网格

    Figure 4.  Computational mesh

    图 5  碳烟模型示意图

    Figure 5.  Schematic diagram of soot model

    图 6  液体和蒸汽贯穿距随网格尺寸变化

    Figure 6.  Curve of liquid and vapor penetration with mesh size

    图 7  最高温度和最高温度的导数随时间变化

    Figure 7.  Curve of maximum temperature and derivative of maximum temperature with time

    图 8  碳烟前驱物生成组分和碳烟前驱物质量演变

    Figure 8.  Soot precursor formation components and soot precursor mass evolution

    图 9  碳烟前驱物生成组分和碳烟前驱物质量分布

    Figure 9.  Cloud diagram of soot precursor formation components and soot precursor mass distribution

    图 10  碳烟颗粒质量随时间变化

    Figure 10.  Curve of soot particle mass with time

    图 11  实验碳烟与模拟碳烟的质量分布及模拟脉动值云图

    Figure 11.  Mass distribution of experimental soot and simulated soot and cloud diagram of simulated pulsation value

    图 12  碳烟质量与数密度随时间变化

    Figure 12.  Curve of soot mass and number density with time

    图 13  中心轴线、侧翼和高度示意图

    Figure 13.  Schematic diagram of central axis, flank and height

    图 14  中心轴线和侧翼碳烟质量、温度随高度变化

    Figure 14.  Curve of smoke mass and temperature with height on central axis and flank

    图 15  中心轴线和侧翼碳烟质量、当量比随高度变化

    Figure 15.  Curve of soot mass and equivalence ratio of central axis and flank with height

    表  1  替代燃料模型

    Table  1.   Alternative fuel model

    参数 数值及说明
    替代燃料 JW
    燃料组分
    (摩尔分数)
    NC12H26 0.3
    IC16H34 0.36
    C10H18 0.246
    C7H8 0.094
    化学反应组分数 231
    化学反应数 5741
    下载: 导出CSV
  • [1] 曾文,刘静忱,陈潇潇,等. 正癸烷预混燃烧的详细反应动力学数值模拟[J]. 航空动力学报,2011,26(10): 2258-2266. ZENG Wen,LIU Jingchen,CHEN Xiaoxiao,et al. Detailed reaction kinetic modeling of n-decane premixed combustion[J]. Journal of Aerospace Power,2011,26(10): 2258-2266. (in Chinese doi: 10.13224/j.cnki.jasp.2011.10.019

    ZENG Wen, LIU Jingchen, CHEN Xiaoxiao, et al. Detailed reaction kinetic modeling of n-decane premixed combustion[J]. Journal of Aerospace Power, 2011, 26(10): 2258-2266. (in Chinese) doi: 10.13224/j.cnki.jasp.2011.10.019
    [2] 马洪安. 国产RP-3航空煤油着火与燃烧特性的实验与数值研究[D]. 辽宁 大连: 大连理工大学,2016. MA Hongan. Experimental and numerical investigation on ignition and combustion characteristics of Chinese RP-3 kerosene[D]. Dalian Liaoning: Dalian University of Technology,2016. (in Chinese

    MA Hongan. Experimental and numerical investigation on ignition and combustion characteristics of Chinese RP-3 kerosene[D]. Dalian Liaoning: Dalian University of Technology, 2016. (in Chinese)
    [3] 解茂昭. 内燃机计算燃烧学[M]. 2版. 大连: 大连理工大学出版社,2005.
    [4] FRENKLACH M,WANG Hai. Detailed modeling of soot particle nucleation and growth[J]. Symposium (International) on Combustion,1991,23(1): 1559-1566. doi: 10.1016/S0082-0784(06)80426-1
    [5] CHEN Wenmiao,SHUAI Shijin,WANG Jianxin. A soot formation embedded reduced reaction mechanism for diesel surrogate fuel[J]. Fuel,2009,88(10): 1927-1936. doi: 10.1016/j.fuel.2009.03.039
    [6] JIA M,PENG Z J,XIE M Z. Numerical investigation of soot reduction potentials with diesel homogeneous charge compression ignition combustion by an improved phenomenological soot model[J]. Proceedings of the Institution of Mechanical Engineers: Part D Journal of Automobile Engineering,2009,223(3): 395-412.
    [7] TAO Feng,FOSTER D E,REITZ R D. Soot structure in a conventional non-premixed diesel flame[R]. SAE 2006-01-0196,2006.
    [8] POMRANING E,RUTLAND C J. Dynamic one-equation nonviscosity large-eddy simulation model[J]. AIAA Journal,2002,40: 689-701. doi: 10.2514/2.1701
    [9] SENECAL P K,POMRANING E,RICHARDS K J,et al. Multi-dimensional modeling of direct-injection diesel spray liquid length and flame lift-off length using CFD and parallel detailed chemistry[J]. SAE Transactions,2003,112(3): 1331-1351.
    [10] KOOK S,PICKETT L M. Soot volume fraction and morphology of conventional,fischer-tropsch,coal-derived,and surrogate fuel at diesel conditions[J]. SAE International Journal of Fuels and Lubricants,2012,5(2): 647-664. doi: 10.4271/2012-01-0678
    [11] KOOK S,PICKETT L M. Soot volume fraction and morphology of conventional and surrogate jet fuel sprays at 1000 K and 6.7 MPa ambient conditions[J]. Proceedings of the Combustion Institute,2011,33(2): 2911-2918. doi: 10.1016/j.proci.2010.05.073
    [12] CHEN Xiang,KHANI E,CHEN C P. A unified jet fuel surrogate for droplet evaporation and ignition[J]. Fuel,2016,182: 284-291. doi: 10.1016/j.fuel.2016.05.114
    [13] KIM D,MARTZ J,VIOLI A. A surrogate for emulating the physical and chemical properties of conventional jet fuel[J]. Combustion and Flame,2014,161(6): 1489-1498. doi: 10.1016/j.combustflame.2013.12.015
    [14] CASATI R,SCHEER V,VOGT R,et al. Measurement of nucleation and soot mode particle emission from a diesel passenger car in real world and laboratory in situ dilution[J]. Atmospheric Environment,2007,41(10): 2125-2135. doi: 10.1016/j.atmosenv.2006.10.078
    [15] LINDSTEDT R P,LOULOUDI S A. Joint-scalar transported PDF modeling of soot formation and oxidation[J]. Proceedings of the Combustion Institute,2005,30(1): 775-783. doi: 10.1016/j.proci.2004.08.080
    [16] KENNEDY I M. Models of soot formation and oxidation[J]. Progress in Energy and Combustion Science,1997,23(2): 95-132. doi: 10.1016/S0360-1285(97)00007-5
    [17] NAGLE J,STRICKLAND-CONSTABLE R F. Oxidation of carbon between 1000 – 2000 ℃[C]//Proceedings of the Fifth Conference on Carbon. Amsterdam: Elsevier,1962: 154-164.
    [18] NEOH K G,HOWARD J B,SAROFIM A F. Effect of oxidation on the physical structure of soot[J]. Symposium (International) on Combustion,1985,20(1): 951-957. doi: 10.1016/S0082-0784(85)80584-1
    [19] KIM D,MARTZ J,VIOLI A. The relative importance of fuel oxidation chemistry and physical properties to spray ignition[J]. SAE International Journal of Fuels and Lubricants,2017,10(1): 10-21. doi: 10.4271/2017-01-0269
    [20] COMBUSTION N E. Diesel search page[EB/OL]. [2020-03-13]. https://ecn.sandia.gov/ecn-data-search/.
  • 加载中
图(15) / 表(1)
计量
  • 文章访问数:  228
  • HTML浏览量:  85
  • PDF量:  95
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-26
  • 网络出版日期:  2023-11-01

目录

    /

    返回文章
    返回