留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高温高速混合陶瓷球轴承性能分析与试验研究

郑艳伟 刘公平 赵滨海 郝大庆 陈后清

郑艳伟, 刘公平, 赵滨海, 等. 高温高速混合陶瓷球轴承性能分析与试验研究[J]. 航空动力学报, 2024, 39(8):20210402 doi: 10.13224/j.cnki.jasp.20210402
引用本文: 郑艳伟, 刘公平, 赵滨海, 等. 高温高速混合陶瓷球轴承性能分析与试验研究[J]. 航空动力学报, 2024, 39(8):20210402 doi: 10.13224/j.cnki.jasp.20210402
ZHENG Yanwei, LIU Gongping, ZHAO Binhai, et al. Performance analysis and test research of high temperature and high speed hybrid ceramic ball bearings[J]. Journal of Aerospace Power, 2024, 39(8):20210402 doi: 10.13224/j.cnki.jasp.20210402
Citation: ZHENG Yanwei, LIU Gongping, ZHAO Binhai, et al. Performance analysis and test research of high temperature and high speed hybrid ceramic ball bearings[J]. Journal of Aerospace Power, 2024, 39(8):20210402 doi: 10.13224/j.cnki.jasp.20210402

高温高速混合陶瓷球轴承性能分析与试验研究

doi: 10.13224/j.cnki.jasp.20210402
详细信息
    作者简介:

    郑艳伟(1991-),男,工程师,硕士,主要从事于轴承设计、仿真分析及应用技术的研究。E-mail:2217768638@qq.com

  • 中图分类号: V233.1;TH133.33

Performance analysis and test research of high temperature and high speed hybrid ceramic ball bearings

  • 摘要:

    针对高温高速轴承易发生黏着磨损、保持架断裂等失效特征,搭建了轴承动力学分析模型和试验台架,对轴承进行了优化设计、性能分析及试验验证。研究结果表明:随着转速的增加,内圈接触应力增大,外圈接触应力减小,混合陶瓷球轴承的最大接触应力大于全钢轴承;随着转速的增加,滚动体与保持架的碰撞力、保持架打滑率和旋滚比均增加,保持架稳定性降低,全钢轴承的保持架打滑率和旋滚比均大于混合陶瓷球轴承,滚动体与保持架碰撞力相当;自主搭建了试验台进行试验研究,当供油温度110 ℃,转速为120000 r/min时,混合陶瓷球轴承温度低于全钢轴承,混合陶瓷球轴承振动加速度低于2.0g,全钢轴承振动加速度低于4.0g,通过供、回油温差,可判断混合陶瓷球轴承温升低于全钢轴承;试验验证了混合陶瓷轴承较全钢轴承更适用于高温高速工况。

     

  • 图 1  轴承结构图

    Figure 1.  Bearing structure

    图 2  轴承坐标系

    Figure 2.  Coordinate system of bearing

    图 3  滚动体与套圈之间的接触应力

    Figure 3.  Contact stress of rolling element to ring

    图 4  接触应力与转速关系

    Figure 4.  Relation of contact pressure with speed

    图 5  滚动体与套圈之间的旋滚比

    Figure 5.  Spin-to-roll of rolling element to ring

    图 6  旋滚比与转速的关系

    Figure 6.  Relation of spin-to-roll with speed

    图 7  滚动体与保持架之间的碰撞力与转速的关系

    Figure 7.  Relation of rolling element to cage force with speed

    图 8  保持架打滑率与转速的关系

    Figure 8.  Relation of cage slip ratio with speed

    图 9  混合陶瓷轴承保持架质心轨迹

    Figure 9.  Cage mass center trajectory of hybrid ceramic ball bearing

    图 10  全钢轴承保持架质心轨迹

    Figure 10.  Cage mass center trajectory of all-steel ball bearing

    图 11  试验机实物图

    Figure 11.  Testing machine object

    图 12  试验机结构简图

    Figure 12.  Structure diagram of testing machine

    图 13  轴承试验转速

    Figure 13.  Bearing test speed

    图 14  试验轴承振动加速度

    Figure 14.  Test bearing vibration acceleration

    图 15  被试轴承温度

    Figure 15.  Test bearing temperature

    图 16  供、回油温度

    Figure 16.  Supply and return oil temperature

    图 17  试验后轴承外观

    Figure 17.  Bearing after testing

    表  1  8Cr4Mo4V与Si3N4材料对比

    Table  1.   Characteristics of 8Cr4Mo4V compared with Si3N4

    项目 8Cr4Mo4V Si3N4
    密度/(g/cm3 7.9 3.2
    热膨胀系数/10−6 (1/K) 10.6 3.2
    弹性模量/GPa 210 320
    泊松比 0.3 0.26
    维式硬度/(kgf/mm2 700~800 1400~1700
    耐热温度/℃ 360 580
    磁性 不导磁
    下载: 导出CSV

    表  2  轴承材料

    Table  2.   Bearing material

    项目材料
    外圈8Cr4Mo4V
    内圈13Cr4Mo4Ni4V
    滚动体Si3N4
    保持架40CrNiMoA
    下载: 导出CSV

    表  3  轴承检测结果

    Table  3.   Bearing measurement result

    轴承编号 内径尺寸
    偏差/μm
    (试验前/后)
    外径尺寸
    偏差/μm
    (试验前/后)
    径向游隙/μm
    (试验前/后)
    全钢轴承1 1.5/1.5 3.5/3.5 27/27
    全钢轴承2 2/2 3/3 26/26
    混合陶瓷
    轴承1
    2.5/2.5 3.5/3.5 27/27
    混合陶瓷
    轴承2
    1.5/1.5 3/3 27/27
    下载: 导出CSV
  • [1] 王黎钦,贾虹霞,郑德志,等. 高可靠性陶瓷轴承技术研究进展[J]. 航空发动机,2013,39(2): 6-13. WANG Liqin,JIA Hongxia,ZHENG Dezhi,et al. Advances in high-reliability ceramic rolling element bearing technology[J]. Aeroengine,2013,39(2): 6-13. (in Chinese doi: 10.3969/j.issn.1672-3147.2013.02.002

    WANG Liqin, JIA Hongxia, ZHENG Dezhi, et al. Advances in high-reliability ceramic rolling element bearing technology[J]. Aeroengine, 2013, 39(2): 6-13. (in Chinese) doi: 10.3969/j.issn.1672-3147.2013.02.002
    [2] 王黎钦,李秀娟,古乐,等. 弹用混合式陶瓷轴承的开发研究[J]. 推进技术,2001,22(6): 522-525. WANG Liqin,LI Xiujuan,GU Le,et al. Research on hybrid ceramic bearings for missile turbojet engines[J]. Journal of Propulsion Technology,2001,22(6): 522-525. (in Chinese doi: 10.3321/j.issn:1001-4055.2001.06.021

    WANG Liqin, LI Xiujuan, GU Le, et al. Research on hybrid ceramic bearings for missile turbojet engines[J]. Journal of Propulsion Technology, 2001, 22(6): 522-525. (in Chinese) doi: 10.3321/j.issn:1001-4055.2001.06.021
    [3] WANG L,SNIDLE R W,GU L. Rolling contact silicon nitride bearing technology: a review of recent research[J]. Wear,2000,246(1/2): 159-173.
    [4] 张锡昌. 超高速高温轴承试验机的设计[J]. 轴承,1995(3): 28-30,47. ZHANG Xichang. Design of ultra-high speed and high temperature bearing testing machine[J]. Bearing,1995(3): 28-30,47. (in Chinese

    ZHANG Xichang. Design of ultra-high speed and high temperature bearing testing machine[J]. Bearing, 1995(3): 28-30, 47. (in Chinese)
    [5] 张锡昌,张莉洁. 高速高温混合轴承热膨胀分析[J]. 轴承,2001(3): 8-9,45. ZHANG Xichang,ZHANG Lijie. Analysis on heat expansion for high speed and high temperature hybrid ball bearings[J]. Bearing,2001(3): 8-9,45. (in Chinese doi: 10.3969/j.issn.1000-3762.2001.03.003

    ZHANG Xichang, ZHANG Lijie. Analysis on heat expansion for high speed and high temperature hybrid ball bearings[J]. Bearing, 2001(3): 8-9, 45. (in Chinese) doi: 10.3969/j.issn.1000-3762.2001.03.003
    [6] 李建华,李军林,郭向东,等. 陶瓷球轴承性能分析与试验研究[J]. 轴承,2001(12): 32-36,43. LI Jianhua,LI Junlin,GUO Xiangdong,et al. Performance analysis and experimental study of ceramic ball bearings[J]. Bearing,2001(12): 32-36,43. (in Chinese doi: 10.3969/j.issn.1000-3762.2001.12.014

    LI Jianhua, LI Junlin, GUO Xiangdong, et al. Performance analysis and experimental study of ceramic ball bearings[J]. Bearing, 2001(12): 32-36, 43. (in Chinese) doi: 10.3969/j.issn.1000-3762.2001.12.014
    [7] 孙慧广. 某型弹用涡轮转子发动机高速陶瓷角接触球轴承研制[D]. 哈尔滨: 哈尔滨工业大学,2017. SUN Huiguang. Development of high speed ceramic angular contact ball bearings for turbine rotor engine[D]. Harbin: Harbin Institute of Technology,2017. (in Chinese

    SUN Huiguang. Development of high speed ceramic angular contact ball bearings for turbine rotor engine[D]. Harbin: Harbin Institute of Technology, 2017. (in Chinese)
    [8] DENG Sier,LU Yujia,ZHANG Wenhu,et al. Cage slip characteristics of a cylindrical roller bearing with a trilobe-raceway[J]. Chinese Journal of Aeronautics,2018,31(2): 351-362. doi: 10.1016/j.cja.2017.07.001
    [9] ZHANG Wenhu,DENG Sier,CHEN Guodning,et al. Influence of lubricant traction coefficient on cage's nonlinear dynamic behavior in high-speed cylindrical roller bearing[J]. Journal of Tribology,2017,139(6): 1-22.
    [10] CUI Yongcun,DENG Sier,ZHANG Wenhu,et al. The impact of roller dynamic unbalance of high-speed cylindrical roller bearing on the cage nonlinear dynamic characteristics[J]. Mechanism and Machine Theory,2017,118: 65-83. doi: 10.1016/j.mechmachtheory.2017.08.001
    [11] JIANG Shuyun,MAO Hebing. Investigation of the high speed rolling bearing temperature rise with oil-air lubrication[J]. Journal of Tribology,2011,133(2): 1.
    [12] TAKEBAYASHI H. Bearings for extreme special environments-part 3-basic performance of ceramic (silicon nitride) bearings[J]. KOYO Engineering Journal,2001,158: 53-60.
    [13] TAKEBAYASHI H. Bearings for extreme special environment (4)-application of ceramic bearings[J]. KOYO Engineering Journal,2002(160): 56-64.
    [14] SCHULLER F T,PINEL S I,SIGNER H R. Effect of cage design on characteristics of high-speed-jet-lubricated 35-millimeter-bore ball bearing. [R]. NASA-TP-1732 1980.
    [15] SCHULLER F T. Operating characteristics of high-speed,jet-lubricated 35-millimeter-bore ball bearing with a single-outer-land-guided cage[R]. NASA-TP-1657,1980.
    [16] PINEL S I,SIGNER H R,ZARETSKY E V. Comparison between oil-mist and oil-jet lubrication of high-speed,small-bore,angular-contact ball bearings[J]. Tribology Transactions,2001,44(3): 327-338. doi: 10.1080/10402000108982465
    [17] GLOECKNER P,MARTIN M,FLOUROS M. Comparison of power losses and temperatures between an all-steel and a direct outer ring-cooled,hybrid 133-mm-bore ball bearing at very high speeds[J]. Tribology Transactions,2017,60(6): 1148-1158. doi: 10.1080/10402004.2016.1262930
    [18] SLANEY F D. Hybrid ceramic bearing development for gas turbine engines[C]//Proceedings of ASME 1994 International Gas Turbine and Aeroengine Congress and Exposition,2015.
    [19] JENG Y R,HUANG P Y. Temperature rise of hybrid ceramic and steel ball bearings with oil-mist lubrication[J]. Tribology & Lubrication Technology,2000,56(12): 18-23.
    [20] SHODA Y,IJUIN S,ARAMAKI H,et al. The performance of a hybrid ceramic ball bearing under high speed conditions with the under-race lubrication method[J]. Tribology Transactions,1997,40(4): 676-684. doi: 10.1080/10402009708983708
    [21] NOSAKA M,TAKADA S,KIKUCHI M,et al. Ultra-high-speed performance of ball bearings and annular seals in liquid hydrogen at up to 3 million DN (120 000 rpm)©[J]. Tribology Transactions,2004,47(1): 43-53. doi: 10.1080/05698190490279047
    [22] NOSAKA M. Cryogenic tribology of high-speed bearings and shaft seals in liquid hydrogen[J]. Tribology Online,2011,6(2): 133-141. doi: 10.2474/trol.6.133
    [23] GIBSON H,THOM R,MOORE C,et al. History of space shuttle main engine turbopump bearing testing at the Marshall space flight center: M10-0338[R]. Colorado Springs: 57th JANNAF Joint Propulsion Meeting. 2010.
    [24] GIBSON H G. Design guide for bearings used in cryogenic turbopumps and test rigs: NASA/TP-2019-220549[R]. Huntsville: George C,2019.
    [25] POPLAWSKI J V. Slip and cage forces in a high speed roller bearing[J]. Journal of Lubrication Technology,1972,94: 143-150. doi: 10.1115/1.3451660
  • 加载中
图(17) / 表(3)
计量
  • 文章访问数:  266
  • HTML浏览量:  44
  • PDF量:  302
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-29
  • 网络出版日期:  2024-03-27

目录

    /

    返回文章
    返回