留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

发动机支点柔性圆周炭石墨密封材料PV值试验

宋延礼 刘平 鄢鹏 夏尚能 刘力 沈欣

宋延礼, 刘平, 鄢鹏, 等. 发动机支点柔性圆周炭石墨密封材料PV值试验[J]. 航空动力学报, 2022, 37(12):2830-2839 doi: 10.13224/j.cnki.jasp.20210406
引用本文: 宋延礼, 刘平, 鄢鹏, 等. 发动机支点柔性圆周炭石墨密封材料PV值试验[J]. 航空动力学报, 2022, 37(12):2830-2839 doi: 10.13224/j.cnki.jasp.20210406
SONG Yanli, LIU Ping, YAN Peng, et al. Experiment on PV value of fulcrum flexible circumferential carbon graphite sealing material for engine[J]. Journal of Aerospace Power, 2022, 37(12):2830-2839 doi: 10.13224/j.cnki.jasp.20210406
Citation: SONG Yanli, LIU Ping, YAN Peng, et al. Experiment on PV value of fulcrum flexible circumferential carbon graphite sealing material for engine[J]. Journal of Aerospace Power, 2022, 37(12):2830-2839 doi: 10.13224/j.cnki.jasp.20210406

发动机支点柔性圆周炭石墨密封材料PV值试验

doi: 10.13224/j.cnki.jasp.20210406
详细信息
    作者简介:

    宋延礼(1969-),男,工程师,主要从事航空炭石墨密封材料研究

    通讯作者:

    刘平(1992-),男,博士生,主要从事航空炭石墨密封材料研究。E-mail:LP996781020@163.com

  • 中图分类号: V263.1+4

Experiment on PV value of fulcrum flexible circumferential carbon graphite sealing material for engine

  • 摘要:

    根据高空长航时航空发动机支点柔性圆周炭石墨密封材料的实际服役工况,从高摩擦线速度(60~130 m/s)、轻载(30~400 kPa)和温度(25~600 ℃)的角度出发,自主设计动态试验测试台,评测国内部分现役机型用炭石墨密封材料的PV值,并通过装机论证PV值试验的可行性。试验结果表明:采用80 m/s恒速,逐级增加载荷测得XX1#-1、XX2#-1、XX3#-1、XX4#-1和XX5#-1的许用[PV]值分别为4.8、5.9、6.9、9.1、12.3 MPa·m/s。采用300 kPa定载,逐级增加线速度测得XX2#-2、XX3#-2、XX4#-2和XX5#-2的许用[PV]值分别为6.0、8.0、10.0、12.0 MPa·m/s。经某研究所装机论证发现当试验样的许用[PV]值小于发动机的许用[PV]值时,易出现异常磨损,并伴随燃气泄漏;当试验样的许用[PV]值大于发动机的许用[PV]值时,能为发动机支点炭石墨密封材料选型提供材料特性数据,为发动机炭石墨密封材料的研究提供鉴别方法。此外,该试验方法将大大节约发动机用石墨封严材料选型的时间成本、人力成本和上机论证经费的投入成本。

     

  • 图 1  PV值测试样品尺寸规格(单位:mm)

    Figure 1.  PV value test sample size specifications (unit: mm)

    图 2  PV值试验台部分结构示意图

    1,4 40CrNiMoA镀铬光滑摩擦环;2 40Cr2MoV镀铬螺旋摩擦环;3 50 Mn镀铬螺旋摩擦环。

    Figure 2.  Partial structure diagram of PV value test bench

    图 3  PV值摩擦磨损试验台

    1 摩擦环机柄;2 摩擦环;3 试样压力器;4 控温试样卡具盒;5 轴承座;6 转矩传感器;7 联轴器;8 调速电动机;9 转速传感器;10 工作台锁紧螺栓;11 试验架;12 大底板;13 防护罩及控制系统。

    Figure 3.  PV value friction and wear test bench

    图 4  炭石墨密封材料恒速时的PV值与温度和磨损量的特征曲线

    Figure 4.  Characteristic curves of PV value, temperature and wear amount of carbon graphite sealing material at constant velocity

    图 5  炭石墨密封材料恒载时的 PV 值与温度和磨损量的特征曲线

    Figure 5.  Characteristic curves of PV value, temperature and wear amount of carbon graphite sealing material at permanent load

    表  1  炭石墨密封材料的性能参数

    Table  1.   Properties parameters of carbon graphite sealing material

    性能参数XX1#XX2#XX3#XX4#XX5#XX6#
    抗折强度/MPa778362726785
    抗压强度/MPa176167120156143196
    体积密度/(g/cm31.981.931.931.951.902.0
    肖氏硬度/HS868363838985
    开气孔率/%3.01.42.11.21.70.7
    热氧化失重/(mg/(cm3·h))
    (500 ℃×2 h)
    0.80.80.90.60.50.4
    下载: 导出CSV

    表  2  对摩副材料的性能参数

    Table  2.   Performance parameters of anti-rubber pair materials

    编号材料名称表面粗糙度/μm径向跳动/mm直径/mm螺距/mm槽宽/mm螺旋升角/(°)
    140CrNiMoA镀铬0.2~0.40.04450
    240Cr2MoV镀铬0.4~0.80.0345010.036
    350Mn镀铬0.4~0.80.0445012.536
    440CrNiMoA镀铬0.2~0.40.03450
    下载: 导出CSV

    表  3  炭石墨密封材料恒速时的PV值试验及验证结果汇总

    Table  3.   Summary of PV value test and results verification of carbon graphite sealing material at constant velocity

    试样编号极限PV值/
    (MPa·m/s)
    极限点磨损值/
    (mm/h)
    样件温度/
    许用[PV]值/
    (MPa·m/s)
    发动机设计要求
    许用[PV]值/(MPa·m/s)
    验证结果
    XX1#-17.20.1375894.8≥ 11.0发动机应用异常
    XX2#-18.80.0155555.9≥ 4.0发动机应用正常
    XX3#-110.40.0060526.9≥ 6.0发动机应用正常
    XX4#-113.60.0058759.1≥ 8.0发动机应用正常
    XX5#-118.40.00336112.3≥ 11.0发动机应用正常
    XX6#-1≥ 32.8≥ 21.8待验证
    下载: 导出CSV

    表  4  炭石墨密封材料恒载时的PV值试验及验证结果汇总

    Table  4.   Summary of PV value test and results verification of carbon graphite sealing materials at permanent load

    试样编号极限PV值/
    (MPa·m/s)
    极限点磨损值/
    (μm/km)
    样件温度/
    许用[PV]值/
    (MPa·m/s)
    发动机设计
    要求许用[PV]值/
    (MPa·m/s)
    验证结果
    XX2#-29.00.056706.0≥ 11.0发动机应用异常
    XX3#-212.00.157878.0≥ 6.0发动机应用正常
    XX4#-215.00.0098610.0≥ 8.0发动机应用正常
    XX5#-218.00.0067712.0≥ 11.0发动机应用正常
    XX6#-2≥ 27.0≥ 18.0待验证
    下载: 导出CSV
  • [1] 黄湘龙,刘李,郭陵松. 主减速器石墨封严碗密封失效分析[J]. 工业技术创新,2019,6(2): 28-31. HUANG Xianglong,LIU Li,GUO Lingsong. Analysis on the failure of the graphite sealing bowl in the main reducer[J]. Industrial Technology Innovation,2019,6(2): 28-31. (in Chinese
    [2] 陈磊. 航空发动机刷式密封泄漏性能与结构优化研究[D].南京: 东南大学, 2019.

    CHEN Lei. Studies onleakage characteristics and structure optimization of aeroengine brush seal[D]. Nanjing: Southeast University, 2019. (in Chinese)
    [3] 《中国石油和化工》编辑部. 高性能石墨封严材料自主生产[J]. 中国石油和化工,2019,338(4): 72. China Petroleum and Chemical Industry Editorial Department. Independent production of high-performance graphite sealing materials[J]. China Petroleum and Chemical Industry,2019,338(4): 72. (in Chinese
    [4] 王利恒. 石墨圆周密封装置密封面接触应力特性研究[J]. 机械工程师,2019(11): 123-129. WANG Liheng. Study on contact stress of circumference graphite seal instrument[J]. Mechanical Engineer,2019(11): 123-129. (in Chinese
    [5] 孙健伟. 高温高速旋转轴接触式密封材料研制及其密封性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2014.

    SUN Jianwei. Research on contact sealing material and performance for high speed and high temperature rotary shaft[D]. Harbin: Harbin Institute of Technology, 2014. (in Chinese)
    [6] TU Chuanjun,HONG Lirui,SONG Tenghui,et al. Superior mechanical properties of sulfonated graphene reinforced carbon-graphite composites[J]. Carbon,2019,148: 378-386. doi: 10.1016/j.carbon.2019.04.001
    [7] HE Zhao,LIU Zhanjun,SONG Jinliang,et al. Fine-grained graphite with super molten salt barrier property produced from filler of natural graphite flake by a liquid-phase mixing process[J]. Carbon,2019,145: 367-377. doi: 10.1016/j.carbon.2019.01.029
    [8] SHEN Ke,CAO Xinlei,HUANG Zhenghong,et al. Microstructure and thermal expansion behavior of natural microcrystalline graphite[J]. Carbon,2021,177: 90-96. doi: 10.1016/j.carbon.2021.02.055
    [9] 徐凯松. 石墨密封应用发展现状的进展研究[J]. 炭素,2019(4): 44-46. XU Kaisong. Research on development of graphite seal[J]. Carbon,2019(4): 44-46. (in Chinese
    [10] 闫玉涛,李雪娟,胡广阳. 石墨密封材料高温摩擦磨损行为及预测[J]. 航空动力学报,2014,29(2): 314-320. YAN Yutao,LI Xuejuan,HU Guangyang. Friction/wear behaviors and predication of graphite seal material under high temperature[J]. Journal of Aerospace Powe,2014,29(2): 314-320. (in Chinese
    [11] 邓少刚,郭丽潇,梁宇. 载荷对HTR-PM高温气冷堆用石墨球摩损性能的影响[J]. 辐射防护,2019,39(6): 510-516. DENG Shaogang,GUO Lixiao,LIANG Yu. Effect of loads on wear performance of graphite pebbles used in HTR-PM high temperature gas cooled reactor[J]. Radiation Protection,2019,39(6): 510-516. (in Chinese
    [12] 马华农. MPV-1500型摩擦试验机在测量含油轴承摩擦系数和PV值中的应用[J]. 粉末冶金技术,1990,8(3): 161-164. MA Huanong. Application of type MPV-1500 friction testeing machine for measuring friction coefficient and PV value of oil-impregnated bearing[J]. Powder Metallurgy Technology,1990,8(3): 161-164. (in Chinese
    [13] 马华农. 粉末冶金含油轴承PV值及其测定[J]. 粉末冶金技术,1989,7(2): 101-107. MA Huanong. Determining method of PV value of P/M self-lubrication bearing[J]. Powder Metallurgy Technology,1989,7(2): 101-107. (in Chinese
    [14] 沈锡华. 机械密封端面摩擦副的许用值[J]. 化工设备与管道,1977(2): 3-7. SHEN Xihua. Permissible value of the friction pair on the end face of the mechanical seal[J]. Process Equipment and Piping,1977(2): 3-7. (in Chinese
    [15] 程熊. 高PV值的气体润滑轴向滑动环密封[J]. 工程设计,1995(1): 38-44. CHEN Xiong. Gas-lubricated axial sliding ring seal with high PV value[J]. Konstruktion,1995(1): 38-44. (in Chinese
    [16] 张鹤,邢庆坤,张静. 高PV值密封环的热负荷建模分析与试验验证[J]. 润滑与密封,2016,41(4): 115-118. ZHANG He,XING Qingkun,ZHANG Jing. Modeling and experimental study on thermal load estimation for seal under high PV value[J]. Lubrication Engineering,2016,41(4): 115-118. (in Chinese doi: 10.3969/j.issn.0254-0150.2016.04.024
    [17] 左孝桐. 机械密封PV值的试验研究[J]. 流体机械,1986(11): 37-38. ZUO Xiaotong. Experimental research on PV value of mechanical seal[J]. Fluid Machinery,1986(11): 37-38. (in Chinese
    [18] 王菁. 方向性椭圆微孔密封表面PV值特性实验研究[D]. 杭州: 浙江工业大学, 2013.

    WANG Jing. Experimental study on behavior of PV value of micro-inclined-ellipse-dimpled surface on mechanical seal[D]. Hangzhou: Zhejiang University of Technology, 2013. (in Chinese)
    [19] 薛雯. 高强石墨的高温摩擦磨损机理试验研究 [D]. 北京: 北京化工大学, 2018.

    XUE Wen. Friction and wear mechanism test research of high-strength graphite in high temperature[D]. Beijing: Beijing University of Chemical Technology, 2018. (in Chinese)
    [20] 胡添琪. 高温下石墨密封材料摩擦磨损性能研究及预测[D].沈阳: 东北大学,2012.

    HU Tianqi. Friction and wear performance research and forecast of graphite sealing materials in high temperature[D]. Shenyang: Northeastern University, 2012. (in Chinese)
    [21] 刘清平,徐笑词,何友成. 薄膜涂层摩擦学性能的灰色分析与预测[J]. 润滑与密封,2003(4): 53-58. LIU Qingping,XU Xiaoci,HE Youcheng. The grey forecast on the tribological behaviors of the film[J]. Lubrication Engineering,2003(4): 53-58. (in Chinese doi: 10.3969/j.issn.0254-0150.2003.04.021
    [22] 胡亚非,王启立,刘颀,等. 石墨密封材料润滑膜形成规律及摩擦磨损研究[J]. 中国矿业大学学报,2010,39(2): 223-226. HU Yafei,WANG Qili,LIU Qi,et al. Research on forming rule of lubricant film and friction-wearing of graphite composite materials[J]. Journal of China University of Mining and Technology,2010,39(2): 223-226. (in Chinese
  • 加载中
图(6) / 表(4)
计量
  • 文章访问数:  243
  • HTML浏览量:  95
  • PDF量:  193
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-30
  • 网络出版日期:  2022-10-26

目录

    /

    返回文章
    返回