留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

天然气氧化特性的实验与数值计算

田雨师 曾文 陈潇潇 胡二江 刘靖 马宏宇

田雨师,曾文,陈潇潇,等.天然气氧化特性的实验与数值计算[J].航空动力学报,2022,37(9):1886‑1895. doi: 10.13224/j.cnki.jasp.20210409
引用本文: 田雨师,曾文,陈潇潇,等.天然气氧化特性的实验与数值计算[J].航空动力学报,2022,37(9):1886‑1895. doi: 10.13224/j.cnki.jasp.20210409
TIAN Yushi,ZENG Wen,CHEN Xiaoxiao,et al.Experiment and simulation on oxidation characteristics of natural gas[J].Journal of Aerospace Power,2022,37(9):1886‑1895. doi: 10.13224/j.cnki.jasp.20210409
Citation: TIAN Yushi,ZENG Wen,CHEN Xiaoxiao,et al.Experiment and simulation on oxidation characteristics of natural gas[J].Journal of Aerospace Power,2022,37(9):1886‑1895. doi: 10.13224/j.cnki.jasp.20210409

天然气氧化特性的实验与数值计算

doi: 10.13224/j.cnki.jasp.20210409
基金项目: 

国家科技重大专项(2017⁃Ⅲ⁃0006⁃0031) 

详细信息
    作者简介:

    田雨师(1996-),女,硕士生,主要从事碳氢燃料基础燃烧特性研究。

    通讯作者:

    曾文(1977-),男,教授,博士,主要从事发动机先进燃烧技术研究。E⁃mail:zengwen928@sohu.com

  • 中图分类号: V231.2

Experiment and simulation on oxidation characteristics of natural gas

  • 摘要:

    在流动管反应器中对压力为0.1 MPa、温度范围为500~1 850 K、当量比分别为0.5、1.0与3.5的工况条件下天然气(90%甲烷/7%乙烷/3%丙烷,体积分数)的氧化过程进行了实验测试。同时,通过全局敏感性分析方法,构建了天然气的简化反应动力学机理(38组分和149反应),并对天然气的氧化特性进行了数值计算。结果表明:随着当量比增大,燃料发生氧化反应的起始温度与终止温度逐渐升高,CO生成与消耗完全对应的反应温度逐渐升高,NO的生成量逐渐降低。天然气的简化反应机理可以很好地预测天然气氧化过程中主要组分摩尔分数随温度变化的整体趋势;但是在C3H8、C2H2、NO、NO2的起始反应温度或摩尔分数峰值的预测上与相应实验值存在差异。

     

  • 图 1  实验系统布置图

    Figure 1.  Schematic diagram of the experimental facility

    图 2  流动管反应器实图

    Figure 2.  Picture of the flow reactor

    图 3  流动管反应器内的温度分布

    Figure 3.  Temperature profiles inside the flow reactor

    图 4  天然气氧化过程中的主要组分摩尔分数随温度的变化趋势(ϕ=0.5)

    Figure 4.  Variation trend of the mole fraction of main species with temperature in the oxidation of nature gas (ϕ=0.5)

    图 5  天然气氧化过程中的主要组分摩尔分数随温度的变化趋势(ϕ=1.0)

    Figure 5.  Variation trend of the mole fraction of main species with temperature in the oxidation of nature gas (ϕ=1.0)

    图 6  天然气氧化过程中的主要组分摩尔分数随温度的变化趋势(ϕ=3.5)

    Figure 6.  Variation trend of the mole fraction of main species with temperature in the oxidation of nature gas (ϕ=3.5)

    表  1  实验工况及气体组成

    Table  1.   Experiment conditions and gas compositions

    当量比摩尔分数
    CH4C2H6C3H8O2N2He
    0.50.040 50.003 150.001 350.197 5500.743 1830.014 267
    1.00.040 50.003 150.001 350.098 7750.371 5920.484 633
    3.50.040 50.003 150.001 350.028 2210.106 1690.820 610
    下载: 导出CSV
  • [1] BULAT G,JONES W P,MARQUIS A J.NO and CO formation in an industrial gas⁃turbine combustion chamber using LES with the Eulerian sub⁃grid PDF method[J].Combustion and Flame,2014,161(7):1804⁃1825.
    [2] ALMEIDA D S,LACAVA P T.Analysis of pollutant emissions in double⁃stage swirl chamber for gas turbine application[J].Energy Procedia,2015,66:117⁃120.
    [3] LYRA S,CANT R S.Analysis of high pressure premixed flames using equivalent reactor networks for predicting NOx emissions[J].Fuel,2013,107(9):261⁃268.
    [4] STARIK A M,KOZLOV V E,LEBEDEV A B,et al.Application of reactor net models for the simulation of gas⁃turbine combustor emissions[J].International Journal of Sustainable Aviation,2014,1(1):43⁃57.
    [5] MOHAMED H,TICHA H B,MOHAMED S.Simulation of pollutant emissions from a gas⁃turbine combustor[J].Combustion Science and Technology,2004,176(5/6):819⁃834.
    [6] FICHET V,KANNICHE M,PLION P,et al.A reactor network model for predicting NOx emissions in gas turbines[J].Fuel,2010,89(9):2202⁃2210.
    [7] JARPALA R,BURLE N A,VOLETI M,et al.Effect of swirl on the flame dynamics and pollutant emissions in an ultra⁃lean non⁃premixed model gas turbine burner[J].Combustion Science and Technology,2017,189(10):1832⁃1848.
    [8] 尉曙明,索建秦.航空衍生工业燃气轮机双燃料贫燃预混低污染燃烧技术[J].航空动力学报,2015,30(9):2049⁃2057.

    WEI Shuming,SUO Jianqin.Aero⁃derivative industrial gas turbine dual fuel lean premixed low emission combustion technology[J].Journal of Aerospace Power,2015,30(9):2049⁃2057.(in Chinese)
    [9] ABIAN M,GIMENEZ⁃LOPEZ J,BILBAO R,et al.Effect of different concentration levels of CO2 and H2O on the oxidation of CO:experiments and modeling[J].Proceedings of the Combustion Institute,2011,33(1):317⁃323.
    [10] ABIAN M,ALZUETA M U,GLARBORG P.Formation of NO from N2/O2 mixtures in a flow reactor:toward an accurate prediction of thermal NO[J].International Journal of Chemical Kinetics,2015,47(8):518⁃531.
    [11] BURKE S M,METCALFE W,HERBINET O,et al.An experimental and modeling study of propene oxidation:Part 1 speciation measurements in jet⁃stirred and flow reactors[J].Combustion and Flame,2014,161(11):2765⁃2784.
    [12] GAO Z H,HU E J,XU Z H,et al.Low to intermediate temperature oxidation studies of dimethoxymethane/n‑heptane blends in a jet‑stirred reactor[J].Combustion and Flame,2019,207:20⁃35.
    [13] BURKE U,METCALFE W K,BURKE S M,et al.A detailed chemical kinetic modeling,ignition delay time and jet⁃stirred reactor study of methanol oxidation[J].Combustion and Flame,2016,165:125⁃136
    [14] 高振华.二甲氧基甲烷/正庚烷混合燃料的宽温度范围实验与反应动力学模型研究[D].西安:西安交通大学,2020.

    GAO Zhenhua.Experimental and kinetic modeling study of dimethoxymethane/n‑heptane blends in wide temperature range[D].Xi'an:Xi'an Jiaotong University,2020.(in Chinese)
    [15] 郑玮琳,庞历瑶,张世杰,等.组分变化对甲烷氧化特性影响[J].航空动力学报,2021,36(1):15⁃24.

    ZHENG Weilin,PANG Liyao,ZHANG Shijie,et al.Effect of composition variance on mechane oxidation characteristics[J].Journal of Aerospace Power,2021,36(1):15⁃24.(in Chinese)
    [16] 殷阁媛.2,4,4⁃三甲基⁃1⁃戊烯基础燃烧特性和化学反应动力学机理研究[D].西安:西安交通大学,2019.

    YIN Geyuan.Comprehensive chemical kinetic modeling study on 2,4,4⁃trimethyl⁃1⁃pentene combustion[D].Xi'an Jiaotong University,2019.(in Chinese)
    [17] LIU Y X,YU D,TIAN D X,et al.An experimental and modeling study of oxidation of 1,2,4⁃trimethylcyclohexane with JSR[J].Proceedings of the Combustion Institute,2019,37(1):437⁃444.
    [18] CURRAN H J,GAFFURI P,PITZ W J,et al.A comprehensive modeling study of n‑heptane oxidation[J].Combustion and Flame,1998,114(1/2):149⁃177.
    [19] BAKALI A E,DAGAUT P,PILLIER L,et al.Experimental and modeling study of the oxidation of natural gas in a premixed flame,shock tube,and jet⁃stirred reactor[J].Combustion and Flame,2004,137(1):109⁃128.
    [20] HUNTER T B,LITZINGER T A,WANG H,et al.Ethane oxidation at elevated pressures in the intermediate temperature regime:experiments and modeling[J].Combustion and Flame,1996,104(4):505⁃523.
    [21] METCALFE W K,BURKE S M,AHMED S S,et al.A hierarchical and comparative kinetic modeling study of C1⁃C2 hydrocarbon and oxygenated fuels[J].International Journal of Chemical Kinetics,2013,45(10):638⁃675.
    [22] KEROMNES A,METCALFE W K,HEUFER K A,et al.An experimental and detailed chemical kinetic modeling study of hydrogen and syngas mixture oxidation at elevated pressures[J].Combustion and Flame,2013,160(6):995⁃1011.
    [23] ZHOU C W,LI Y,O'CONNOR E,et al.A comprehensive experimental and modeling study of isobutene oxidation[J].Combustion and Flame,2016,167:353⁃379.
    [24] LI Y,ZHOU C W,SOMERS K P,et al.The oxidation of 2⁃butene:a high pressure ignition delay,kinetic modeling study and reactivity comparison with isobutene and 1⁃butene[J].Proceedings of the Combustion Institute,2017,36(1):403⁃411.
    [25] ZHOU C W,LI Y,BURKE U,et al.An experimental and chemical kinetic modeling study of 1,3⁃butadiene combustion:Ignition delay time and laminar flame speed measurements[J].Combustion and Flame,2018,197:423⁃438.
    [26] MORRIS M D.Factorial sampling plans for preliminary computational experiments[J].Technometrics,1991,33(2):161⁃174.
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  95
  • HTML浏览量:  32
  • PDF量:  30
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-01
  • 网络出版日期:  2022-10-14

目录

    /

    返回文章
    返回