留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

氢气引导乙烯火焰非定常燃烧过程

邓维鑫 李季 张冬青 田野

邓维鑫, 李季, 张冬青, 等. 氢气引导乙烯火焰非定常燃烧过程[J]. 航空动力学报, 2023, 38(1):79-85 doi: 10.13224/j.cnki.jasp.20210419
引用本文: 邓维鑫, 李季, 张冬青, 等. 氢气引导乙烯火焰非定常燃烧过程[J]. 航空动力学报, 2023, 38(1):79-85 doi: 10.13224/j.cnki.jasp.20210419
DENG Weixin, LI Ji, ZHANG Dongqing, et al. Unsteady combustion process of ethylene flame with pilot hydrogen[J]. Journal of Aerospace Power, 2023, 38(1):79-85 doi: 10.13224/j.cnki.jasp.20210419
Citation: DENG Weixin, LI Ji, ZHANG Dongqing, et al. Unsteady combustion process of ethylene flame with pilot hydrogen[J]. Journal of Aerospace Power, 2023, 38(1):79-85 doi: 10.13224/j.cnki.jasp.20210419

氢气引导乙烯火焰非定常燃烧过程

doi: 10.13224/j.cnki.jasp.20210419
基金项目: 智强基金; 国家自然科学基金青年基金(11902337,51706237)
详细信息
    作者简介:

    邓维鑫(1983-),男,副研究员,博士,研究领域为高超声速推进技术。E-mail:dengweixin21@aliyun.com

  • 中图分类号: V231.2

Unsteady combustion process of ethylene flame with pilot hydrogen

  • 摘要:

    基于脉冲燃烧直连式试验台,开展了超燃冲压发动机氢气引导乙烯火焰的非定常燃烧过程研究。燃烧室入口条件为马赫数2、总温950 K和总压1.0 MPa。试验过程分为4个阶段:冷流、引导氢气单独燃烧、引导氢气点燃乙烯、乙烯单独燃烧。基于高频壁面压力测量和火焰荧光高速摄影,获得了代表性测点的压力时间曲线及燃烧室内火焰发展历程,提取了压力平均值、振荡幅度和频率、着火时间及反应位置等重要信息,分析了不同燃烧阶段的非定常特性。试验结果表明:在氢气单独燃烧阶段,非定常特性源于凹槽后斜坡区域氢气反应强度的变化。在氢气点燃乙烯阶段,非定常特性由氢气和乙烯火焰的“交接”引起。在乙烯单独燃烧阶段,非定常特性由燃烧和超声速流动之间的耦合引起。

     

  • 图 1  燃烧室流道及压力测点位置示意图(单位:mm)

    Figure 1.  Combustor flowpath and locations of pressure taps(unit: mm)

    图 2  试验时序

    Figure 2.  Test time procedure

    图 3  氢气单独燃烧阶段火焰高速摄影图像

    Figure 3.  High speed photos of hydrogen flame in period ofhydrogen combustion alone

    图 4  氢气单独燃烧阶段5个压力测点的时间历程

    Figure 4.  Pressures with time at the five locations in period of hydrogen combustion alone

    图 5  氢气单独燃烧阶段壁面平均压力

    Figure 5.  Average wall pressure in period of hydrogen combustion alone

    图 6  氢气点 燃乙烯阶段火焰高速摄影图像

    Figure 6.  High speed photos of hydrogen and ethylene flame in period of ethylene igniting by hydrogen

    图 7  氢气点燃乙烯阶段5个压力测点的时间历程

    Figure 7.  Pressures with time at the five locations in period of ethylene igniting by hydrogen

    图 8  氢气点燃乙烯阶段壁面平均压力

    Figure 8.  Average wall pressure in period of ethylene igniting by hydrogen

    图 9  乙烯单独燃烧阶段火焰高速摄影图像

    Figure 9.  High speed photos of ethylene flame in period of ethylene combustion alone

    图 10  乙烯单独燃烧阶段5个压力测点的时间历程

    Figure 10.  Pressures with time at the five locations in period of ethylene combustion alone

    图 11  乙烯单独燃烧阶段壁面平均压力

    Figure 11.  Average wall pressure in period of ethylene combustion alone

    表  1  燃烧室入口气流参数

    Table  1.   Gas parameters at combustor entry

    Mapt/MPaTt/K$x_{{\rm{H}}_2{\rm{O}}} $/%$x_{{\rm{O}}_2} $/%$x_{{\rm{N}}_2} $/%
    32.71 850302149
    下载: 导出CSV
  • [1] SUN Mingbo,GONG Chen,ZHANG Shunping,et al. Spark ignition process in a scramjet combustor fueled by hydorgen and equipped with multi-cavities at mach 4 flight condition[J]. Experimental Thermal and Fluid Science,2012,43: 90-96. doi: 10.1016/j.expthermflusci.2012.03.028
    [2] SUN Mingbo,LEI Jing,WU Haiyan,et al. Flow patterns and mixing characteristics of gaseous fuel multiple injections in a non-reacting supersonic combustor[J]. Heat Mass Transfer,2011,47: 1499-1516. doi: 10.1007/s00231-011-0804-x
    [3] MATHUR T,GRUBER M,JACKSON K,et al. Super combustion experiments with a cavity-based fuel injector[J]. Journal of Propulsion and Power,2001,17(6): 1305-1312. doi: 10.2514/2.5879
    [4] SUN Mingbo,WANG Hongbo,BAI Xuesong,et al. Flame stabilization in a supersonic combustor with hydrogen injection upstream of cavity flameholders: experiments and simulations[J]. Journal of Aerospace Engineering,2011,225: 1351-1365. doi: 10.1177/0954410011401498
    [5] LI Xiaopeng, LIU Weidong, PAN Yu, et al. Characterization of ignition transient processes in kerosene-fueled model scramjet engine by dual-pulse laser-induced plasma [J]. Acta Astronautica, 2018, 114: 23-29.
    [6] MA Fuhua, LI Jian, YANG V, et al. Thermoacoustic flow instability in a scramjet combustor[R]. AIAA 2005-3824, 2005.
    [7] LI Jian, MA Fuhua, YANG V, et al. A comprehensive study of combustion oscillations in a hydrocarbon-fueled scramjet engine[R]. AIAA 2007-836, 2007.
    [8] LIN Kuocheng, JACKSON K, BEHDADNIA R, et al. Acoustic characterization of an ethylene-fueled scramjet combustor with a recessed cavity flameholder[R]. AIAA 2007-5382, 2007.
    [9] LIN Kuocheng,JACKSON K,BEHDADNIA R,et al. Acoustic characterization of an ethylene-fueled scramjet combustor with a cavity flameholder[J]. Journal of Propulsion and Power,2010,26(6): 1161-1169. doi: 10.2514/1.43338
    [10] MICKA D J. Combustion stabilization, structure, and spreading in a laboratory dual-mode scramjet combustor[D]. Michigan, US: University of Michigan, 2010.
    [11] WANG Zhenguo, SUN Mingbo, WANG Hongbo, et al. Mixing-related low frequency oscillation of combustion in an ethylene-fueled supersonic combustor[EB/OL]. [2021-12-13]. http: //dx. doi.org/10.1016/j.proci.2014.09.005.
    [12] SUN Mingbo,CUI Xingda,WANG Hongbo,et al. Flame flashback in a supersonic combustor fueled by ethylene with cavity flameholder[J]. Journal of Propulsion and Power,2015,31(3): 976-980. doi: 10.2514/1.B35580
    [13] 邓维鑫,乐嘉陵,杨顺华,等. 注油方式对超燃冲压发动机燃烧性能的影响[J]. 航空动力学报,2013,28(7): 1449-1457. doi: 10.13224/j.cnki.jasp.2013.07.007

    DENG Weixin,LE Jialing,YANG Shunhua,et al. Effect of fueling scheme on scramjet combustion performance[J]. Journal of Aerospace Power,2013,28(7): 1449-1457. (in Chinese) doi: 10.13224/j.cnki.jasp.2013.07.007
    [14] TIAN Ye,XIAO Baoguo,ZHANG Shunping,et al. Experimental and computational study on combustion performance of a kerosene fueled dual-mode scramjet engine[J]. Aerospace Science and Technology,2015,46: 451-458. doi: 10.1016/j.ast.2015.09.002
    [15] TIAN Ye,YANG Shunhua,LE Jialing,et al. Numerical study on effect of air throttling on combustion mode formation and transition in a dual-mode scramjet combustor[J]. Aerospace Science and Technology,2016,52: 173-180. doi: 10.1016/j.ast.2016.02.027
    [16] TIAN Ye,YANG Shunhua,LE Jialing,et al. Study on flame stabilization of a hydrogen and kerosene fueled combustor[J]. Aerospace Science and Technology,2016,59: 183-188. doi: 10.1016/j.ast.2016.10.023
    [17] DENG Weixin,YANG Shunhua,LE Jialing,et al. Experimental research of air-throttling ignition for scramjet at Ma 6.5[J]. Chinese Journal of Aeronautics,2017,30(3): 932-938. doi: 10.1016/j.cja.2017.03.017
    [18] SHI Wen,TIAN Ye,ZHANG Wanzhou,et al. Experimental investigation on flame stabilization of a kerosene-fueled scramjet combustor with pilot hydrogen[J]. Journal of Zhejiang University:Science A (Applied Physics and Engineering),2020,21(8): 663-672. doi: 10.1631/jzus.A1900565
    [19] WILLIAM H H, DAVID T P, DANIEL H D, et al. Hypersonic airbreathing propulsion[M]. Washington DC: AIAA, 1994: 333-334
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  309
  • HTML浏览量:  71
  • PDF量:  214
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-08
  • 网络出版日期:  2022-11-08

目录

    /

    返回文章
    返回