留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

节径凸起结构对串列双圆柱干涉噪声的影响

王大庆 仝帆 冯和英 王勇 杨成浩

王大庆, 仝帆, 冯和英, 等. 节径凸起结构对串列双圆柱干涉噪声的影响[J]. 航空动力学报, 2023, 38(1):160-172 doi: 10.13224/j.cnki.jasp.20210421
引用本文: 王大庆, 仝帆, 冯和英, 等. 节径凸起结构对串列双圆柱干涉噪声的影响[J]. 航空动力学报, 2023, 38(1):160-172 doi: 10.13224/j.cnki.jasp.20210421
WANG Daqing, TONG Fan, FENG Heying, et al. Influence of pitch diameter protruding structure on interference noise of tandem double cylinders[J]. Journal of Aerospace Power, 2023, 38(1):160-172 doi: 10.13224/j.cnki.jasp.20210421
Citation: WANG Daqing, TONG Fan, FENG Heying, et al. Influence of pitch diameter protruding structure on interference noise of tandem double cylinders[J]. Journal of Aerospace Power, 2023, 38(1):160-172 doi: 10.13224/j.cnki.jasp.20210421

节径凸起结构对串列双圆柱干涉噪声的影响

doi: 10.13224/j.cnki.jasp.20210421
基金项目: 国家自然科学基金(12102451,51875194,11602290,11802114)
详细信息
    作者简介:

    王大庆(1996-),男,硕士生,主要从事叶轮机械气动噪声控制研究

    通讯作者:

    仝帆(1990-),男,高级工程师,博士,主要研究方向为叶轮机械气动声学、仿生降噪技术。E-mail:tongfan@cardc.cn

  • 中图分类号: V211.7;TB535

Influence of pitch diameter protruding structure on interference noise of tandem double cylinders

  • 摘要:

    为探究周期性节径凸起结构对串列双圆柱体钝体杆件干涉噪声的降噪效果与降噪规律,在0.55 m×0.4 m声学消声风洞开展了串列双圆柱降噪实验,设计了8种不同参数的周期性节径凸起结构,实验研究了4种不同来流速度(雷诺数为0.4×105~1.6×105)下周期性节径凸起结构对串列双圆柱干涉噪声的影响。研究表明:周期性节径凸起结构可以减弱甚至完全抑制单音峰值噪声的产生,最大峰值噪声降噪量可达近30 dB,总声压级最高降噪量可达18.1 dB。不同工况状态下,各种参数化结构对噪声抑制能力有所不同,均存在最佳值,其中凸起高度为(0.1D~0.15D)、凸起间距为0.5D左右(D为基准圆柱直径)的周期性节径凸起结构在较广工况范围下都具有较好的降噪效果。周期性节径凸起结构的引入,不仅改变了串列双圆柱对应的峰值特征频率和涡脱落频率,而且抑制圆柱杆件卡门涡街的产生。

     

  • 图 1  全消声室实验装置

    Figure 1.  Experimental device for full anechoic chamber

    图 2  圆柱周期性节径凸起结构示意图

    Figure 2.  Schematic diagram of the periodic pitch diameter protruding structure of the cylinder

    图 3  消声风洞背景噪声

    Figure 3.  Background noise of anechoic wind tunnel

    图 4  单圆柱与串列双圆柱噪声频谱对比(U0=60 m/s)

    Figure 4.  Comparison of noise spectrum of single cylinder and tandem double cylinders (U0=60 m/s)

    图 5  不同来流速度下基准双圆柱噪声频谱特性分析

    Figure 5.  Analysis of noise spectrum characteristics of reference double cylinders under different incoming flow velocities

    图 6  不同雷诺数条件下对应的瞬时展向涡量云图

    Figure 6.  Corresponding instantaneous spanwise vorticity cloud images under different Reynolds number conditions

    图 7  不同凸起高度对串列双圆柱干涉噪声的影响

    Figure 7.  Influence of different protruding heights on the interference noise of tandem double cylinders

    图 8  不同凸起高度对串列双圆柱干涉噪声降噪量的影响

    Figure 8.  Influence of different protruding heights on the interference noise reduction of tandem double cylinders

    图 9  不同凸起高度的串列双圆柱总声压指向性分布

    Figure 9.  Overall sound pressure directivity distribution of tandem double cylinders with different protruding heights

    图 10  不同凸起高度的串列双圆柱总声压级与来流速度的关系

    Figure 10.  Relationship between the overall sound pressure level of tandem double cylinders with different protruding heights and the incoming flow velocity

    图 11  不同凸起高度结构的总声压级降噪量

    Figure 11.  Overall sound pressure level noise reduction ofdifferent protruding height parameter structures

    图 12  不同凸起高度的串列双圆柱声功率变化(U0=60 m/s,Re≈1.2×105

    Figure 12.  Variation of sound power of tandem doublecylinders with different protruding heights (U0=60 m/s,Re≈1.2×105

    图 13  凸起间距对串列双圆柱干涉噪声频谱的影响

    Figure 13.  Influence of protruding spaces on the interference noise spectrum of tandem double cylinders

    图 14  凸起间距对串列双圆柱干涉噪声降噪量的影响

    Figure 14.  Influence of protroding spaces on the interference noise reduction of tandem double cylinders

    图 15  不同凸起间距的串列双圆柱远场辐射噪声总声压指向性分布

    Figure 15.  Overall sound pressure directivity distribution of the far-field radiated noise of tandem double cylinders with different protruding spaces

    图 16  不同凸起间距的串列双圆柱总声压级与来流速度的关系

    Figure 16.  Relationship between the overall sound pressure level of tandem double cylinders with different protruding spaces and the incoming flow velocity

    图 17  不同凸起间距结构的总声压级降噪量

    Figure 17.  Overall sound pressure level noise reduction of different protruding space structures

    图 18  不同凸起间距结构的串列双圆柱声功率变化(U=60 m/s,Re≈1.2×105

    Figure 18.  Variation of sound power of tandem double cylinders with different protruding space structures(U=60 m/s,Re≈1.2×105

    表  1  节径凸起结构设计参数

    Table  1.   Design parameters of pitch diameter protruding structure

    序号名称基准直径
    D/mm
    凸起直径
    D0/mm
    高度
    A/mm
    间距
    S/mm
    1Baseline3030.000
    2A1.5S93031.50.05D0.3D
    3A3S93033.00.1D0.3D
    4A4.5S93034.50.15D0.3D
    5A6S93036.00.2D0.3D
    6A12S93042.00.4D0.3D
    7A3S4.53033.00.1D0.15D
    8A3S63033.00.1D0.2D
    9A3S153033.00.1D0.5D
    下载: 导出CSV

    表  2  G.R.A.S 46AE型传声器主要技术指标

    Table  2.   Main technical specifications of the G.R.A.S microphone type 46AE

    参数数值及说明
    类型46AE
    传声器直径/cm1.27
    灵敏度/(mV/Pa)50
    频率响应/Hz3.15~2×104
    频率误差/(dB/Hz)±3
    声压动态响应上限/dB148
    麦克风热噪声/dB(A)14.5
    下载: 导出CSV

    表  3  不同凸起高度结构的总声压级

    Table  3.   Overall sound pressure level of different protruding height parameter structures

    结构Loasp/dB
    U0=20 m/sU0=40 m/sU0=60 m/sU0=80 m/s
    Baseline-Baseline89.55107.80119.96114.15
    A1.5S9-Baseline87.7792.73103.52110.59
    A3S9-Baseline75.3491.41102.50110.22
    A4.5S9-Baseline75.0490.80101.91109.27
    A6S9-Baseline74.5194.46105.44110.24
    A12S9-Baseline89.7099.99113.87120.46
    下载: 导出CSV

    表  4  不同凸起间距结构的总声压级

    Table  4.   Overall sound pressure level value of different protruding space structures

    结构Loasp/dB
    U0=20 m/sU0=40 m/sU0=60 m/sU0=80 m/s
    Baseline-Baseline89.55107.80119.96114.16
    A3S4.5-Baseline73.2595.98114.90119.05
    A3S6-Baseline73.1995.38104.66110.73
    A3S9-Baseline75.3491.41102.50110.22
    A3S15-Baseline76.3191.39102.42109.85
    下载: 导出CSV
  • [1] PRASANTH T K,MITTAL S. Vortex-induced vibration of two circular cylinders at low Reynolds number[J]. Journal of Fluids and Structures,2009,25(4): 731-741.
    [2] 杜晓庆,邬伟伟,赵燕,等. 低雷诺数下两类串列圆柱的涡激振动[J]. 振动工程学报,2021,34(2): 283-291. doi: 10.16385/j.cnki.issn.1004-4523.2021.02.008

    DU Xiaoqing,WU Weiwei,ZHAO Yan,et al. Vortex-induced vibration of two types of tandem circular cylinders at low Reynolds number[J]. Journal of Vibration Engineering,2021,34(2): 283-291. (in Chinese) doi: 10.16385/j.cnki.issn.1004-4523.2021.02.008
    [3] 赵良举,杨南奇,吴朵,等. 横掠二维串列双圆柱绕流气动噪声的数值模拟[J]. 重庆大学学报,2009,32(8): 943-949. doi: 10.11835/j.issn.1000-582X.2009.08.016

    ZHAO Liangju,YANG Nanqi,WU Duo,et al. Aeroacoustics numerical simulation of flow past tow-dimensional two circular cylinders in Tandem arrangements[J]. Journal of Chongqing University,2009,32(8): 943-949. (in Chinese) doi: 10.11835/j.issn.1000-582X.2009.08.016
    [4] PAPAIOANNOU G V,YUE D K P,TRIANTAFYLLOU M S,et al. Three-dimensionality effects in flow around two tandem cylinders[J]. Journal of Fluid Mechanics,2006,558: 387-413. doi: 10.1017/S0022112006000139
    [5] 刘敏,刘飞,胡亚涛,等. 三维串列双圆柱绕流气动流场及声场模拟[J]. 工程热物理学报,2008,29(3): 403-406. doi: 10.3321/j.issn:0253-231X.2008.03.011

    LIU Min,LIU Fei,HU Yatao,et al. Aerodynamics and aeroacoustics numerical simulation of flow past two circular cylinders in tandem arrangements[J]. Journal of Engineering Thermophysics,2008,29(3): 403-406. (in Chinese) doi: 10.3321/j.issn:0253-231X.2008.03.011
    [6] CHEN W L,XIN D B,XU F,et al. Suppression of vortex-induced vibration of a circular cylinder using suction-based flow control[J]. Journal of Fluids and Structures,2013,42(10): 25-39.
    [7] BOWER W, KIBENS V. An overview of active flow control applications at the Boeing company[R]. AIAA-2004-2624, 2004.
    [8] PATEL M, CAIN A. Numerical simulation of flow control techniques for separation control[R]. AIAA-2002-668, 2002.
    [9] NATI G,KOTSONIS M,GHAEMI S,et al. Control of vortex shedding from a blunt trailing edge using plasma actuators[J]. Experimental Thermal and Fluid Science,2013,46: 199-210. doi: 10.1016/j.expthermflusci.2012.12.012
    [10] SILVA G P G DA,EGUEA J P,CROCE J A G,et al. Slat aerodynamic noise reduction using dielectric barrier discharge plasma actuators[J]. Aerospace Science and Technology,2020,97: 105642.1-105642.11.
    [11] FOSHAT S. Numerical investigation of the effects of plasma actuator on separated laminar flows past an incident plate under ground effect[J]. Aerospace Science and Technology,2020,98: 105646.1-105646.10.
    [12] ZHU H,HAO W,LI C,et al. Application of flow control strategy of blowing, synthetic and plasma jet actuators in vertical axis wind turbines[J]. Aerospace Science and Technology,2019,88: 468-480. doi: 10.1016/j.ast.2019.03.022
    [13] FLINOIS T L B,COLONIUS T. Optimal control of circular cylinder wakes using long control horizons[J]. Physics of Fluids,2015,27(8): 1-22.
    [14] 魏峥,夏超,袁海东,等. 覆盖多孔介质的圆柱尾迹实验研究[J]. 空气动力学学报,2017,35(2): 265-270.

    WEI Zheng,XIA Chao,YUAN Haidong,et al. Experimental study on the wake of a circular cylinder with porous layer coating[J]. Journal of Aerodynamics,2017,35(2): 265-270. (in Chinese)
    [15] LIU F, GUO H, HU T, et al. Experimental investigation on the aeroacoustics of circular cylinders covered with metal foam[R]. AIAA-2019-2715, 2019.
    [16] ARCONDOULIS E,LIU Y,LI Z,et al. Structured porous material design for passive flow and noise control of cylinders in uniform flow[J]. Materials,2019,12(18): 2905.1-2905.16.
    [17] BULATHSINGHALA D,WANG Z,GURSUL I. Modified near-wakes of axisymmetric cylinders with slanted base[J]. Aerospace Science and Technology,2019,86: 351-363. doi: 10.1016/j.ast.2019.01.022
    [18] BERNICKE P,AKKERMANS R A D,ANANTHAN V B,et al. A zonal noise prediction method for trailing-edge noise with a porous model[J]. International Journal of Heat and Fluid Flow,2019,80: 108469.1-108469.11. doi: 10.1016/j.ijheatfluidflow.2019.108469
    [19] ZDRAVKOVICH M M. The effects of interference be-tween circular cylinders in cross flow[J]. Journal of Fluids and Structures,1987,1(2): 239-261. doi: 10.1016/S0889-9746(87)90355-0
    [20] GEYER T F,SARRADJ E. Circular cylinders with soft porous cover for flow noise reduction[J]. Experiments in Fluids,2016,57(3): 30-45. doi: 10.1007/s00348-016-2119-7
    [21] SHI L, WANG W Q, ZHANG C C, et al. The effect of bionic v-ring surface on the aerodynamic noise of a circular cylinder[R]. Applied Mechanics and Materials, 2014, 461: 751-762.
    [22] HUTCHESON F V,BROOKS T F. Noise radiation from single and multiple rod configurations[J]. International Journal of Aeroacoustics,2012,11(3/4): 291-333.
    [23] LI L,LIU P,XING Y,et al. Experimental investigation on the noise reduction method of helical cables for a circular cylinder and tandem cylinders[J]. Applied Acoustics,2019,152: 79-87. doi: 10.1016/j.apacoust.2019.03.027
    [24] 沈国辉,张扬,郑翀. 光滑圆柱风噪声的降噪措施研究[J]. 振动与冲击,2020,39(23): 52-57. doi: 10.13465/j.cnki.jvs.2020.23.008

    SHEN Guohui,ZHANG Yang,ZHENG Chong. Denoising measures against aeolian noise of smooth circular cylinders[J]. Journal of Vibration and Shock,2020,39(23): 52-57. (in Chinese) doi: 10.13465/j.cnki.jvs.2020.23.008
    [25] PARUCHURI C, SUBRAMANIAN N, JOSEPH P, et al. Broadband noise reduction through leading edge serrations on realistic aero-foils[R]. AIAA-2015-2202, 2015.
    [26] ASGHAR A,PEREZ R E,JANSEN P W,et al. Application of leading-edge tubercles to enhance propeller performance[J]. AIAA Journal,2020,58(11): 4659-4671. doi: 10.2514/1.J058740
    [27] REVELL J D,PRYDZ R A,HAYS A P. Experimental study of aerodynamic noise vs drag relationships for circular cylinders[J]. AIAA Journal,1997,16(9): 889-897.
  • 加载中
图(18) / 表(4)
计量
  • 文章访问数:  163
  • HTML浏览量:  41
  • PDF量:  30
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-08
  • 网络出版日期:  2022-10-27

目录

    /

    返回文章
    返回