留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

热振环境下钛合金薄壁结构疲劳寿命

揭小落 李丽远 胡由宏 谢学多 吴彦增

揭小落, 李丽远, 胡由宏, 等. 热振环境下钛合金薄壁结构疲劳寿命[J]. 航空动力学报, 2023, 38(1):55-60 doi: 10.13224/j.cnki.jasp.20210422
引用本文: 揭小落, 李丽远, 胡由宏, 等. 热振环境下钛合金薄壁结构疲劳寿命[J]. 航空动力学报, 2023, 38(1):55-60 doi: 10.13224/j.cnki.jasp.20210422
JIE Xiaoluo, LI Liyuan, HU Youhong, et al. Fatigue life of titanium alloy thin-walled structure under thermal vibration environment[J]. Journal of Aerospace Power, 2023, 38(1):55-60 doi: 10.13224/j.cnki.jasp.20210422
Citation: JIE Xiaoluo, LI Liyuan, HU Youhong, et al. Fatigue life of titanium alloy thin-walled structure under thermal vibration environment[J]. Journal of Aerospace Power, 2023, 38(1):55-60 doi: 10.13224/j.cnki.jasp.20210422

热振环境下钛合金薄壁结构疲劳寿命

doi: 10.13224/j.cnki.jasp.20210422
基金项目: 国家自然科学基金青年科学基金(12002055)
详细信息
    作者简介:

    揭小落(1994-),女,工程师,硕士,主要从事热振试验技术研究

  • 中图分类号: V416.3;O212;TH123

Fatigue life of titanium alloy thin-walled structure under thermal vibration environment

  • 摘要:

    由于钛合金薄壁结构长时间在飞行热振环境下结构内部产生不断变化的应力,可能引起结构疲劳失效,因此借助振动试验台搭建了高温振动疲劳测试系统,测定了20、150 ℃和300 ℃温度条件下钛合金悬臂薄板结构的随机振动S-N疲劳曲线,并建立了上述温度条件下钛合金悬臂薄板结构的疲劳寿命预测表达式,根据其计算得到的预测寿命与试验件的实际寿命相比误差较小,300 ℃、45.36 MPa应力水平下误差仅为3.76%。该方法可用于高温随机振动载荷作用下结构的疲劳性能和寿命预测研究。

     

  • 图 1  试验件及测点位置示意图 (单位:mm)

    Figure 1.  Setup of test piece with measuring points (unit: mm)

    图 2  高温振动疲劳测试系统示意图

    Figure 2.  Schematic diagram of high temperature vibration fatigue testing system

    图 3  高温振动疲劳试验现场图

    Figure 3.  Field diagram of high temperature vibration fatigue experiment

    图 4  试验件疲劳裂纹位置

    Figure 4.  Fatigue crack location of test piece

    图 5  不同温度下应力PSD曲线

    Figure 5.  Stress PSD curve at different temperatures

    图 6  不同温度下的对数疲劳Srms-N曲线对比

    Figure 6.  Comparison of logarithmic fatigue Srms-N curves at different temperatures

    图 7  不同温度下的疲劳寿命预测曲线对比

    Figure 7.  Comparison of fatigue life prediction curves at different temperatures

    表  1  各工况下破坏循环次数均值

    Table  1.   Number of failure cycles under various working conditions

    温度/℃应力方均根值/MPa平均破坏次数/106
    2049.6821.10
    61.026.90
    84.711.82
    15041.1223.20
    47.6215.70
    53.237.08
    30034.9629.90
    39.6917.70
    45.367.58
    下载: 导出CSV

    表  2  各工况下疲劳寿命对比

    Table  2.   Comparison of fatigue life under different working conditions

    温度/℃应力方均根值/MPa预测寿命/s实际寿命/s误差/%
    2049.686327370244−9.92
    61.02274242445612.14
    84.7161156443−5.09
    15041.12943168300513.63
    47.624630956059−17.39
    53.2326992253426.51
    30034.961270481196306.20
    39.696429270879−9.29
    45.3631396302583.76
    下载: 导出CSV
  • [1] RIZZI S. Experimental research activities in dynamic response and sonic fatigue of hypersonic vehicle structures at NASA langley research center[R]. AIAA-1993-0383,1993.
    [2] JACOBS J H, GRUENSFELDER C, HEDGECOCK C E. Thermal acoustic fatigue of ceramic matrix composite materials[R]. AIAA-1993-1319,1993.
    [3] WU W F,LIOU H Y,TSEH C. Estimation of fatigue damage and fatigue life of components under random loading[J]. International Journal of Pressure Vessels and Piping,1997,72(3): 243-249.
    [4] MOON S,CHO I,YOON D. Fatigue life evaluation of mechanical components using vibration fatigue analysis technique[J]. Journal of Mechanical Science and Technology,2010,25(3): 631-637.
    [5] YU D,NGUYEN T T,PARK S,et al. High-cycle fatigue life prediction for Pb-free BGA under random vibration loading[J]. Microelectronics Reliability,2011,51(3): 649-656. doi: 10.1016/j.microrel.2010.10.003
    [6] MALIGNO R,WHALLEY D C,SILBERSCHMIDT V V. Thermal fatigue life estimation and delamination mechanics studies of multilayered MEMS structures[J]. Microelectronics Reliability,2012,52(8): 1665-1678. doi: 10.1016/j.microrel.2012.03.023
    [7] 金奕山,李琳. 关于航空发动机结构声疲劳寿命估算方法的探讨[J]. 航空动力学报,2003,18(3): 373-377. doi: 10.3969/j.issn.1000-8055.2003.03.013

    JIN Yishan,LI Lin. Discussion on the estimation method of acoustic fatigue life of aero-engine structure[J]. Journal of Aerospace Power,2003,18(3): 373-377. (in Chinese) doi: 10.3969/j.issn.1000-8055.2003.03.013
    [8] 李静,孙强,李春旺,等. 某型航空发动机压气机叶片振动疲劳寿命研究[J]. 应用力学学报,2011,28(2): 189-193.

    LI Jing,SUN Qiang,LI Chunwang,et al. Research on the vibration fatigue life of an aero-engine compressor blade[J]. Chinese Journal of Applied Mechanics,2011,28(2): 189-193. (in Chinese)
    [9] 李久楷,刘永杰,王清远,等. TC17钛合金高温超高周疲劳实验[J]. 航空动力学报,2014,29(7): 1567-1573. doi: 10.13224/j.cnki.jasp.2014.07.008

    LI Jiukai,LIU Yongjie,WANG Qingyuan,et al. Ultra-high cycle fatigue test of TC17 titanium alloy at high temperature[J]. Journal of Aerospace Power,2014,29(7): 1567-1573. (in Chinese) doi: 10.13224/j.cnki.jasp.2014.07.008
    [10] 刘文光,严铖,郭隆清,等. 热环境下飞行器壁板的振动疲劳分析[J]. 失效分析与预防,2014,9(1): 1-5.

    LIU Wenguang,YAN Cheng,GUO Longqing,et al. Vibration fatigue analysis of aircraft panel in thermal environment[J]. Failure Analysis and Prevention,2014,9(1): 1-5. (in Chinese)
    [11] 沙云东,魏静,高志军,等. 热声激励下金属薄壁结构的随机疲劳寿命估算[J]. 振动与冲击,2013,32(10): 162-166. doi: 10.3969/j.issn.1000-3835.2013.10.030

    SHA Yundong,WEI Jing,GAO Zhijun,et al. Random fatigue life estimation of metal thin-walled structures under thermal acoustic excitation[J]. Journal of Vibration and Shock,2013,32(10): 162-166. (in Chinese) doi: 10.3969/j.issn.1000-3835.2013.10.030
    [12] 沙云东,王建,骆丽,等. 热声载荷作用下金属薄壁结构的振动响应与试验验证[J]. 振动与冲击,2017,36(20): 218-224,232. doi: 10.13465/j.cnki.jvs.2017.20.033

    SHA Yundong,WANG Jian,LUO Li,et al. Vibration response and experimental verification of thin-walled metal structures under thermal acoustic loading[J]. Journal of Vibration and Shock,2017,36(20): 218-224,232. (in Chinese) doi: 10.13465/j.cnki.jvs.2017.20.033
    [13] 张维,邹学峰,万春华. 热环境下薄壁结构随机振动响应分析[J]. 工程与试验,2017,57(4): 17-22.

    ZHANG Wei,ZOU Xuefeng,WAN Chunhua. Random vibration response analysis of thin-walled structures in thermal environment[J]. Engineering and Test,2017,57(4): 17-22. (in Chinese)
    [14] 周亚东. 热声振环境下复合材料薄壁结构疲劳评估问题研究[D]. 南京:东南大学,2018.

    ZHOU Yadong. Fatigue evaluation of thin-walled composite structures subjected to thermos-acoustic-vibro loads[D]. Nanjing:Southeast University,2018.(in Chinese)
    [15] ADAMS R D,FERGUSONN S,GEORGIOU S,et al. Cycle counting methods for the estimation of fatigue life[EB/OL]. [2021-04-22]. https://www.esdu.com/cgi-bin/ps.pl?sess=unlicensed_1220313092729kfb&t=doc&p=esdu_06010a.
    [16] BRACCESI C,CIANETTI F,LORI G,et al. Evaluation of mechanical component fatigue behavior under random loads:Indirect frequency domain method[J]. International Journal of Fatigue,2014,61: 141-150. doi: 10.1016/j.ijfatigue.2013.11.017
    [17] BRACCESI C,CIANETTI F,TOMASSINI L. Random fatigue: a new frequency domain criterion for the damage evaluation of mechanical components[J]. International Journal of Fatigue,2015,70: 417-427. doi: 10.1016/j.ijfatigue.2014.07.005
    [18] WANG Y. Spectral fatigue analysis of a ship structural detail: a practical case study[J]. International Journal of Fatigue,2010,32(2): 310-317. doi: 10.1016/j.ijfatigue.2009.06.020
    [19] ADAMS R D,FERGUSON N S,GEORGIOU S,et al. Fatigue damage and life under random loading[DB/OL]. [2021-04-22]. https://esdu.com/cgi-bin/ps.pl?sess=unlicensed_1220313093610ztq&t=doc&p=esdu_06009a.
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  234
  • HTML浏览量:  55
  • PDF量:  67
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-08
  • 网络出版日期:  2022-09-05

目录

    /

    返回文章
    返回