Mechanism of abnormal fluctuation of friction torque of control moment gyro bearing assembly
-
摘要:
在角接触球轴承动力学分析基础上,建立了公-自转耦合的控制力矩陀螺轴承组件非线性动力学微分方程组和摩擦力矩理论计算式,开展了轴承保持架结构、滚道加工精度和轴承预紧力等参数对控制力矩陀螺轴承组件摩擦力矩特性的影响研究,分析了某型号控制力矩陀螺轴承组件摩擦力矩异常波动的机理。分析结果表明:保持架外径表面与套圈引导挡边之间碰摩以及钢球与保持架兜孔间碰摩是引起该型号控制力矩陀螺轴承组件摩擦力矩异常变化的主要因素。合理的轴承原始径向游隙可有效消除轴承保持架外径表面与套圈引导挡边之间的碰摩现象,且避免控制力矩陀螺轴承组件摩擦力矩明显异常波动。
Abstract:Based on dynamics analysis of angular contact ball bearing, the nonlinear differential dynamic equations and the theoretical formula of friction torque for the bearing assembly of control moment gyro with revolution-rotation coupling were established. The influences of cage structure, raceway processing accuracy and preload on friction torque characteristics of the bearing assembly of control moment gyro were studied. The mechanism of abnormal fluctuation in friction torque of a certain bearing assembly of control moment gyro was also analyzed. The analysis results showed that the rub-impact between the outer diameter surface of cage and the guide rib of ring, and that between ball and cage pocket were main factors that triggered the abnormal fluctuation in friction torque of the bearing assembly of control moment gyro. A reasonable original radial clearance of bearing can effectively eliminate the rubbing phenomenon between the outer diameter surface of bearing cage and the guide edge of the ring, and avoid obvious abnormal fluctuation in friction torque of the bearing assembly of control moment gyro.
-
Key words:
- control moment gyroscope /
- bearing assembly /
- friction torque /
- cage /
- rub-impact
-
$ {J_y} $、$ {J_{\textit{z}}} $ 外圈轮体转动惯量分量(kg·m2) $ {m_{\rm{c}}} $ 保持架质量(kg) $ {J_{q{\rm{c}}x}} $、$ {J_{q{\rm{c}}y}} $、${J_{q{\rm{c}}{\textit{z}}}}$ 第q列保持架转动惯量分量(kg·m2) $ {D_{{\rm{cm}}}} $ 保持架中径(mm) $ {\omega _{q{\rm{c}}x}} $ 第q列保持架绕x轴旋转角速度(rad/s) $ {\dot \omega _{q{\rm{b}}xj}} $、$ {\dot \omega _{q{\rm{b}}yj}} $、 ${\dot \omega _{q{\rm{b}}{\textit{z}}j}}$ 第q列第$ j $个钢球角加速度分量(1/s2) ${\theta _{\textit{z}}}$ 外圈轮体倾斜角(°) $ {\ddot x_{q{\rm{c}}}} $、$ {\ddot y_{q{\rm{c}}}} $、${\ddot {\textit{z}}_{q{\rm{c}}}}$ 第q列保持架质心位移加速度分量(mm/s2) ${\theta _{q{\rm{c}}{\textit{z}}}}$ 第q列保持架倾斜角(°) $ {\ddot \theta _{q{\rm{c}}x}} $、$ {\ddot \theta _{q{\rm{c}}y}} $、${\ddot \theta _{q{\rm{c}}{\textit{z}}}}$ 第q列保持架角加速度分量(1/s2) $ {d_x} $、$ {d_y} $、${d_{\textit{z}}}$ 外圈轮体中心位移量(mm) ${G_{{\rm{cage}}}}$ 保持架重力(N) ${L_{}}$ 轴承组件两侧轴承中心距(mm) $ {D_{{\rm{ck}}}} $ 方兜孔长度(mm) ${B_{\rm{e}}}$ 轴承外圈宽度(mm) $ \ddot x $、$ \ddot y $、$\ddot {\textit{z}}$ 外圈轮体中心位移加速度分量(mm/s2) $ {D_{\rm{ce}}} $ 保持架外径(mm) $ {\ddot \theta _y} $、${\ddot \theta _{\textit{z}}}$ 分别为外圈轮体角加速度分量(1/s2) ${B_{\rm{c}}}$ 保持架宽度(mm) $ {\alpha _{\rm{o}}} $ 轴承原始接触角(°) $ {d_{q{\rm{c}}x}} $、$ {d_{q{\rm{c}}y}} $、${d_{q{\rm{c}}{\textit{z}}}}$ 第q列保持架中心位移量(mm) $ {\alpha '_{\rm{o}}} $ 轴承预紧后的接触角(°) $ {\varphi _{q{\rm{c}}}} $ 第q列保持架与外圈引导挡边碰摩处的位置角(°) $ {r_{\rm{i}}} $ 内沟半径(mm) $ {f_{{\rm{c1}}}} $ 保持架与外圈引导挡边之间的摩擦因数 $ {r_{\rm{e}}} $ 外沟半径(mm) $ \eta $ 两物体综合弹性常数 ${F_{\rm{a}}}$ 轴承预紧力(N) $ {N_{q{\rm{c}}}} $、${F_{q{\rm{c}}}}$ 分别为第q列保持架外表面与外圈引导挡边间的法向作用力和摩擦阻力(N) $ {\delta _{{\rm{ao}}}} $ 轴承内圈相对外圈的预紧轴向位移量(mm) ${Q_{q{\rm{i}}j}}$、${Q_{q{\rm{e}}j}}$ 分别为第q列第$ j $个钢球与内、外圈接触力(N) $\,\beta$ 材料弹性滞后系数 ${T_{q\eta {\rm{i}}j}}$、${T_{q\eta {\rm{e}}j}}$ 分别为第q列第$ j $个钢球与内、外沟道接触面$\eta $轴上的拖动力(N) $ {\varepsilon _1} $、$ {\varepsilon _2} $ 分别为钢球和套圈的泊松比 $ {T_{q\xi {\rm{i}}j}} $、${T_{q\xi {\rm{e}}j}}$ 分别为第q列第$ j $个钢球与内、外沟道接触面$ \xi $轴上的拖动力(N) $ {E_1} $、$ {E_2} $ 分别为钢球和套圈的弹性模量 ${F_{q{\rm{r}}\eta {\rm{i}}j}}$、${F_{q{\rm{r}}\eta {\rm{e}}j}}$ 分别为第q列第$ j $个钢球与内、外沟道接触面$ \eta $轴上的滚动摩擦阻力(N) ${a_{q{\rm{i (e) }}j}}$、${b_{q{\rm{i (e) }}j}}$ 分别为第q列第$ j $个钢球与滚道的接触椭圆长半轴和短半轴(mm) ${F_{q{\rm{r}}\xi {\rm{i}}j}}$、${F_{q{\rm{r}}\xi {\rm{e}}j}}$ 分别为第q列第$ j $个钢球与内、外沟道接触面$ {{\mathbf{\omega }}_{\rm{o}}} $轴上的滚动摩擦阻力(N) $\sum {{\rho _{{\rm{i (e) }}j}}}$ 第$ j $个钢球的接触面曲率和 ${Q_{q{\rm{cc}}j}}$、${Q_{q{\rm{ca}}j}}$ 分别为第q列第$ j $个钢球与保持架兜孔周向和轴向的碰撞力(N) ${\mu _{\rm{d}}}$ 滚动体与滚道之间接触摩擦因数 $ m $ 轮体质量(kg) ${R_{q{\rm{i (e) }}j}}$ 第q列第$ j $个钢球与滚道接触处轴承旋转轴的距离(mm) ${\,\alpha _{q{\rm{i} }j} }$、${\,\alpha _{q{\rm{e} }j} }$ 分别为第q列第$ j $个钢球与内、外圈接触角(°) ${\Gamma _{{\rm{i (e) }}}}$、${{\text{ξ}} _{{\rm{i (e)}}}}$ 分别为第1类和第2类完全椭圆积分 $ {m_{\rm{b}}} $ 钢球质量(kg) $ {\nu _{{\eta}\xi }} $ 滚动体与滚道在接触面差动滑动方向上的相对速度差(m/s) $ {\ddot x_{q{\rm{b}}j}} $、$ {\ddot y_{q{\rm{b}}j}} $、${\ddot {\textit{z}}_{q{\rm{b}}j}}$ 第q列第$ j $个钢球质心位移加速度分量(mm/s2) $\varOmega$ 受载后滚动体与滚道之间弹性接触变形产生的椭圆接触面区域 ${F_{q{{n}}j}}$、${F_{q{\tau}j}}$ 第q列第$ j $个钢球惯性力(N) $ {\omega _{q{\rm{si}}\left( {\rm{e}} \right)}}_j $ 钢球自旋角速度(rad/s) ${P_{q{\rm{s}}\eta {\rm{c}}xj}}$、$ {P_{q{\rm{s}}\xi {\rm{c}}yj}} $ 分别为第q列第$ j $个钢球与保持架兜孔周向接触面$ \eta $和$ {{\mathbf{\omega }}_{\rm{o}}} $轴上的滑动摩擦力(N) $ {\mu _{\rm{s}}} $ 钢球与滚道之间自旋摩擦因数 ${P_{q{\rm{r}}\eta {\rm{c}}xj}}$、${P_{q{\rm{r}}\xi {\rm{c}}yj}}$ 分别为第q列第$ j $个钢球与保持架兜孔周向接触面$ \eta $和$ {{\mathbf{\omega }}_{\rm{o}}} $轴上的滚动摩擦力(N) ${\omega _x}$ 外圈轮体自转角速度(rad/s) ${P_{q{\rm{r} }\eta {\rm{a} }{\textit{z}}j} }$、${P_{q{\rm{r}}\xi {\rm{a}}yj}}$ 分别为第q列第$ j $个钢球与保持架兜孔轴向接触面$ \eta $和$ {{\mathbf{\omega }}_{\rm{o}}} $轴上的滚动摩擦力(N) ${\omega _{\rm{g}}}$ 轴承组件机动角速度(rad/s) ${P_{q{\rm{s} }\eta {\rm{a} }{\textit{z}}j} }$、${P_{q{\rm{s}}\xi {\rm{a}}yj}}$ 分别为第q列第$ j $个钢球与保持架兜孔轴向接触面$ \eta $和$ {{\mathbf{\omega }}_{\rm{o}}} $轴上的滑动摩擦力(N) $K_{\rm{n}} $ 衡量钢球与套圈间负荷的变形常数 $ {J_{{\rm{b}}x}} $、$ {J_{{\rm{b}}y}} $、${J_{ {\rm{b} }{\textit{z}}} }$ 钢球转动惯量分量(kg·m2) 下标 ${G_{q{\rm{b}}yj}}$、${G_{q{\rm{b} }{\textit{z}}j} }$ 第q列第$ j $个钢球惯性力矩(N·mm) i 内圈 $ {D_{\rm{w}}} $ 钢球直径(mm) e 外圈 $ {N_{\rm{b}}} $ 钢球数目 q 轴承列数,取1或2 表 1 某控制力矩陀螺角接触球轴承主要参数
Table 1. Main parameters of control moment gyro angular contact ball bearing
参数 数值 轴承内径/mm 24 轴承外径/mm 49 轴承宽度/mm 15 钢球个数 14 钢球直径/mm 6.35 外圈挡边直径/mm 40.15 内沟曲率半径/mm 3.40 外沟曲率半径/mm 3.52 保持架外径/mm 39.65 保持架兜孔直径/mm 6.68 外沟底直径/mm 43.471 内沟底直径/mm 30.726 接触角/(°) 17 外圈转速/(r/min) 6000 外框架机动速度/((°)/s) 60 预紧力/N 120 -
[1] 苏抗,周建江. 微小卫星低可观测外形飞行姿态规划[J]. 航空学报,2011,32(4): 720-728. SU Kang,ZHOU Jianjiang. Flight attitude planning for low observable micro satellite shields[J]. Acta Aeronautica et Astronautica Sinica,2011,32(4): 720-728. (in Chinese [2] AGHALARI A,SHAHRAVI M. Nonlinear electromechanical modelling and dynamical behavior analysis of a satelite reaction wheel[J]. Acta Astronautica,2017,141(12): 143-157. [3] 郭延宁,李传江,张永合,等. 采用框架角受限控制力矩陀螺的航天器姿态机动控制[J]. 航空学报,2011,32(7): 1231-1239. GUO Yanning,LI Chuanjiang,ZHANG Yonghe,et al. Attitude maneuver control of spacecraft using gimbal angle limited control moment gyroscope[J]. Acta Aeronautica et Astronautica Sinica,2011,32(7): 1231-1239. (in Chinese [4] PALMGREN A. Ball and roller bearing engineering[M]. 3rd ed. Philadelphia, US: Svenska Kullaerabriken (SKF) Industries Incorporation, 1946. [5] BLAN M R D,STAMATE V C,HOUPERT L,et al. The influence of the lubricant viscosity on the rolling friction torque[J]. Tribology International,2014,72(4): 1-12. [6] POPESCU A, NAZARE M, OLARU D. Friction torque in a modified angular contact ball bearing operating at low axial loads[C]//8th International Conference on Avanced Concepts in Mechanical Engineering. Iasi, Romania: Iop Publishing Limited, 2018: 1-7. [7] POPESCU A,HOUPERT L,OLARU D N. Four approaches for calculating power losses in an angular contact ball bearing[J]. Mechanism and Machine Theory,2020,144(2): 1-20. [8] 邓四二,李兴林,汪久根,等. 角接触球轴承摩擦力矩特性研究[J]. 机械工程学报,2011,47(5): 114-120. DENG Sier,LI Xinglin,WANG Jiugen,et al. Frictional torque characteristic of angular contact ball bearings[J]. Journal of Mechanical Engineering,2011,47(5): 114-120. (in Chinese doi: 10.3901/JME.2011.05.114 [9] KWAK W,LEE J,LEE Y. Theoretical and experimental approach to ball bearing frictional characteristics compared with cryogenic friction model and dry friction model[J]. Mechanical Systems and Signal Processing,2019,124(10): 424-438. [10] 崔宇飞,邓四二,邓凯文,等. 控制力矩陀螺轴承组件摩擦力矩特性研究[J]. 空间控制技术与应用,2020,46(5): 73-80. CUI Yufei,DENG Sier,DENG Kaiwen,et al. Friction torque characteristics of control moment gyros bearing unit[J]. Aerospace Control and Application,2020,46(5): 73-80. (in Chinese doi: 10.3969/j.issn.1674-1579.2020.05.010 [11] 张涛,陈晓阳,顾家铭,等. 高速角接触球轴承保持架稳定性研究进展[J]. 航空学报,2018,39(7): 32-44. ZHANG Tao,CHEN Xiaoyang,GU Jiaming,et al. Progress of research on cage stability of high-speed angular contact ball bearing[J]. Acta Aeronautica et Astronautica Sinica,2018,39(7): 32-44. (in Chinese [12] GUPTA P K. Frictional instabilities in ball bearings[J]. Tribology Transactions,1988,31(2): 258-268. doi: 10.1080/10402008808981821 [13] KANNEL J W,BUPARA S S. A simplified model of cage motion in angular contact bearings operating in the EHD lubrication regime[J]. Journal of Comparative Physiology,1978,100(3): 395-403. [14] HAN Q,WEN B,WANG M,et al. Investigation of cage motions affected by its unbalance in a ball bearing[J]. Proceedings of the Institution of Mechanical Engineers,2018,232(2): 169-182. [15] 温保岗,韩清凯,乔留春,等. 保持架间隙对角接触球轴承保持架磨损的影响研究[J]. 振动与冲击,2018,37(23): 9-14. WEN Baogang,HAN Qingkai,QIAO Liuchun,et al. Effects of cage clearance on its wear in an angular contact ball bearing[J]. Journal of Vibration and Shock,2018,37(23): 9-14. (in Chinese [16] 徐俊,杨雷,李娟,等. 保持架兜孔形状对高速球轴承动态摩擦力矩的影响[J]. 轴承,2015(7): 34-36. XU Jun,YANG Lei,LI Juan,et al. Effect of cage pocket geometry on dynamic friction torque of high speed ball bearings[J]. Bearing,2015(7): 34-36. (in Chinese doi: 10.3969/j.issn.1000-3762.2015.07.010 [17] 邓四二,华显伟,张文虎. 陀螺角接触球轴承摩擦力矩波动性分析[J]. 航空动力学报,2018,33(7): 186-197. DENG Sier,HUA Xianwei,ZHANG Wenhu. Analysis on friction torque fluctuation of angular contact ball bearing in gyro motor[J]. Journal of Aerospace Power,2018,33(7): 186-197. (in Chinese [18] 张迪,王超,卿涛,等. 空间用多孔聚合物轴承保持架材料研究进展[J]. 机械工程学报,2018,54(9): 17-26. ZHANG Di,WANG Chao,QING Tao,et al. Research progress of porous polymer bearing retainer materials used in aerospace[J]. Journal of Mechanical Engineering,2018,54(9): 17-26. (in Chinese [19] 邓四二. 角接触球轴承摩擦力矩特性研究[D]. 辽宁 大连: 大连理工大学, 2008.DENG Sier. Study on friction torque characteristic of angular contact ball bearings[D]. Dalian Liaoning: Dalian University of Technology, 2008. (in Chinese) [20] 闫普选,朱鹏,黄丽坚,等. 聚酰亚胺多孔含油材料的摩擦磨损性能研究[J]. 摩擦学学报,2008,28(3): 272-276. YAN Puxuan,ZHU Peng,HUANG Lijian,et al. Study on tribological properties of porous polyimide containing lubricants[J]. Tribology,2008,28(3): 272-276. (in Chinese doi: 10.3321/j.issn:1004-0595.2008.03.016 [21] SATHYAN K,GOPINATH K,LEE S H,et al. Bearing retainer designs and retainer instability failures in spacecraft moving mechanical systems[J]. Tribology Transactions,2012,55(4): 503-511. doi: 10.1080/10402004.2012.675118