留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超声速旋流器内气相流场的数值模拟

刘仪 丁畅 孙万林 姜克建 黄言理

刘仪, 丁畅, 孙万林, 等. 超声速旋流器内气相流场的数值模拟[J]. 航空动力学报, 2023, 38(1):134-143 doi: 10.13224/j.cnki.jasp.20210434
引用本文: 刘仪, 丁畅, 孙万林, 等. 超声速旋流器内气相流场的数值模拟[J]. 航空动力学报, 2023, 38(1):134-143 doi: 10.13224/j.cnki.jasp.20210434
LIU Yi, DING Chang, SUN Wanlin, et al. Numerical simulation of gas flow field in supersonic swirler[J]. Journal of Aerospace Power, 2023, 38(1):134-143 doi: 10.13224/j.cnki.jasp.20210434
Citation: LIU Yi, DING Chang, SUN Wanlin, et al. Numerical simulation of gas flow field in supersonic swirler[J]. Journal of Aerospace Power, 2023, 38(1):134-143 doi: 10.13224/j.cnki.jasp.20210434

超声速旋流器内气相流场的数值模拟

doi: 10.13224/j.cnki.jasp.20210434
基金项目: 浙江理工大学科研启动基金(11132932619106)
详细信息
    作者简介:

    刘仪(1968-),男,教授、硕士生导师,博士,主要从事计算流体动力学与传热学、多相流工程理论与工程应用、冲击波理论和材料科学与应用方面的研究

    通讯作者:

    丁畅(1997-),男,硕士生,主要从事多相流工程理论与工程应用研究。E-mail: 1941871099@qq.com

  • 中图分类号: V231;TB126

Numerical simulation of gas flow field in supersonic swirler

  • 摘要:

    为了研究旋流对超声速喷管内流场的影响,在现有旋流器的基础上,通过简化模型而设计出一套前置式超声速旋流器装置,并建立不同旋流器下的三维几何模型,利用计算流体动力学(CFD)软件Fluent,结合realizable k-ε湍流模型对气相流场进行数值模拟。结果表明:在保持入口总压恒定时,随着进气道数量的减少,气体在旋流器中产生的最大切向速度会增大,但不会改变喷管流动具有组合螺旋涡的特性;由于气体的角动量是以减小轴向动量为代价,切向速度的增大,导致出口截面处的平均轴向速度减小;入口总压增大时,气体速度与静温在收缩段的分布接近,在扩张段,气体速度和马赫数增大,而静温减小,并且切向速度在出口截面沿径向方向上呈现出几乎相同的分布。

     

  • 图 1  超声速旋流器及进口结构示意图(单位:mm)

    Figure 1.  Schematic diagram of supersonic swirler and inlet structure (unit: mm)

    图 2  四进气道下超声速旋流器的网格划分

    Figure 2.  Grid of supersonic swirler under four intake passages

    图 3  不同网格密度下沿喷管中心轴线的静压分布与出口截面沿径向方向上的马赫数分布

    Figure 3.  Static pressure distribution along the central axis of the nozzle and the Mach number distribution along the radial direction of the outlet section under different grid densities

    图 4  不同进气道下沿喷管中心轴线的静温、气体速度和静压分布

    Figure 4.  Distribution of static temperature, gas velocity and static pressure along the central axis of nozzle under different intake passages

    图 5  不同进气道下旋流器截面a的切向速度

    Figure 5.  Tangential velocity of swirler section a with different intake passages

    图 6  不同进气道下喷管各截面沿径向方向上的切向速度分布

    Figure 6.  Tangential velocity distribution along the radial direction of the nozzle sections under different intake passages

    图 7  不同进气道下喷管各截面沿径向方向上的轴向速度分布

    Figure 7.  Axial velocity distribution along the radial direction of the nozzle sections under different intake passages

    图 8  不同进气道下超声速喷管的流线图

    Figure 8.  Flow diagram of supersonic nozzle under different intake passages

    图 9  不同进气道下超声速旋流器的切向速度剖面图

    Figure 9.  Tangential velocity profiles of supersonic swirler with different intake passages

    图 10  不同进气道下喷管出口截面f的切向速度云图和流线示意图

    Figure 10.  Tangential velocity and flow diagram of nozzle outlet section f with different intake passages

    图 11  不同进气道下喷管各截面沿径向方向上的静压分布

    Figure 11.  Static pressure distribution along the radial direction of the nozzle sections under different intake passages

    图 12  不同进气道下喷管各截面沿径向方向上的静温分布

    Figure 12.  Static temperature distribution along the radial direction of the nozzle sections under different intake passages

    图 13  不同入口总压下沿喷管中心轴线的无量纲静压、气体速度和静温分布

    Figure 13.  Distribution of dimensionless static pressure, gas velocity and static temperature along the central axis of nozzle under different inlet total pressures

    图 14  不同入口总压下喷管出口截面f处沿径向方向上的静温、气体速度和马赫数分布

    Figure 14.  Distributions of static temperature, gas velocity and Mach number along the radial direction at the nozzle outlet section f under different inlet total pressures

    图 15  不同入口总压下旋流器截面a的切向速度云图

    Figure 15.  Tangential velocity of swirler section a under different inlet total pressures

    图 16  不同入口总压下喷管出口截面f沿径向方向上的切向速度分布

    Figure 16.  Tangential velocity distribution of nozzle outlet section f along radial direction under different inlet total pressures

  • [1] ARINELLI L D O,TROTTA T A F,TEIXEIRA A M,et al. Offshore processing of CO2 rich nature gas with supersonic separator versus conventional routes[J]. Journal of Natural Gas Science and Engineering,2017,46: 199-221. doi: 10.1016/j.jngse.2017.07.010
    [2] TEIXEIRA A M,ARINELLI L D O,MEDEIROS J L D,et al. Recovery of thermodynamic hydrate inhibitors methanol, ethanol and MEG with supersonic separators in offshore natural gas processing[J]. Journal of Natural Gas Science and Engineering,2018,52: 166-186. doi: 10.1016/j.jngse.2018.01.038
    [3] LIU Y,COSTIGAN G,BELLHOUSE B J. Swirling effects on the performance of the micro-particle acceleration and penetration: parametric studies[J]. Powder Technology,2007,183(2): 189-195.
    [4] 杨志毅. 油气超音速旋流分离技术研究[D]. 成都: 西南石油学院, 2004.

    YANG Zhiyi. Study on supersonic hydrocyclone separation of oil and gas[D]. Chengdu: Southwest Petroleum University, 2004. (in Chinese)
    [5] 刘兴伟,刘中良,武洪强. 旋流器后置型超音速分离管流场分析[J]. 北京工业大学学报,2014,40(9): 1394-1401.

    LIU Xingwei,LIU Zhongliang,WU Hongqiang. Analysis of the flow field in the supersonic separation tube of the hydrocyclone[J]. Journal of Beijing University of Technology,2014,40(9): 1394-1401. (in Chinese)
    [6] 蒋文明,刘中良,刘恒伟,等. 新型天然气超音速脱水净化装置现场试验[J]. 天然气工业,2008(2): 136-138,177. doi: 10.3787/j.issn.1000-0976.2008.02.040

    JIANG Wenming,LIU Zhongliang,LIU Hengwei,et al. Field test of a new supersonic natural gas dehydration and purification plant[J]. Natural Gas Industry,2008(2): 136-138,177. (in Chinese) doi: 10.3787/j.issn.1000-0976.2008.02.040
    [7] 胡施俊. 超音速喷嘴涡流管气体分离性能研究[D]. 辽宁 大连: 大连理工大学, 2009.

    HU Shijun. Study on gas separation performance of vortex tube with supersonic inlet nozzles[D]. Dalian Liaoning: Dalian University of Technology, 2009. (in Chinese)
    [8] JASSIM E,ABDI M A,MUZYCHKA Y. Computational fluid dynamics study for flow of natural gas through high-pressure supersonic nozzles: Part 1 real gas effects and shockwave[J]. Petroleum Science and Technology,2008,26(15): 1757-1772. doi: 10.1080/10916460701287847
    [9] JASSIM E,ABDI M A,MUZYCHKA Y. Computational fluid dynamics study for flow of natural gas through high-pressure supersonic nozzles: Part 2 nozzle geometry and vorticity[J]. Petroleum Science and Technology,2008,26(15): 1773-1785. doi: 10.1080/10916460701304410
    [10] LIU Y,KENDALL M A F. Optimization of a jet-propelled particle injection system for the uniform transdermal delivery of drug/vaccine[J]. Biotechnology and Bioengineering,2007,97(5): 1300-1308. doi: 10.1002/bit.21324
    [11] WANG Y G. Analysis for spiral vortex and effect of profile of nozzle and swirler on performance of supersonic separator[J]. Chemical Engineering and Processing-Process Intensification,2020,147: 107676.1-107676.10.
    [12] WEN C,LI A,WALTHER J H,et al. Effect of swirling device on flow behavior in a supersonic separator for natural gas dehydration[J]. Separation and Purification Technology,2016,168: 68-73. doi: 10.1016/j.seppur.2016.05.019
    [13] 朱玉厚. 超音速旋流凝结流动特性研究[D]. 山东 青岛: 中国石油大学(华东), 2018.

    ZHU Yuhou. Study on flow characteristics of supersonic cyclone condensation[D]. Qingdao Shandong: China University of Petroleum, 2018. (in Chinese)
    [14] BOERNER C J,SPARROW E M,SCOTT C J. Compressible swirling flow through convergent-divergent nozzles[J]. Wärme- und Stoffübertragung,1972,5(2): 101-115.
    [15] SHIH T H,LIOU W W,SHABBIR A,et al. A new k-ε eddy viscosity model for high Reynolds number turbulent flows[J]. Computers and Fluids,1995,24(3): 227-238. doi: 10.1016/0045-7930(94)00032-T
    [16] 王福军. 计算流体动力学分析[M]. 北京: 清华大学出版社, 2010.
    [17] 纪兵兵, 陈金瓶. ANSYS ICEM CFD网格划分技术实例详解[M]. 北京: 中国水利水电出版社, 2012.
    [18] 章利特,余秋李,吴博文,等. 超音速喷管内准一维气相流动建模与数值模拟[J]. 过程工程学报,2020,20(12): 1386-1396. doi: 10.12034/j.issn.1009-606X.220026

    ZHANG Lite,YU Qiuli,WU Bowen,et al. Modeling and numerical simulation of quasi-one dimensional gas phase flow in a supersonic nozzle[J]. The Chinese Journal of Process Engineering,2020,20(12): 1386-1396. (in Chinese) doi: 10.12034/j.issn.1009-606X.220026
  • 加载中
图(16)
计量
  • 文章访问数:  156
  • HTML浏览量:  89
  • PDF量:  51
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-10
  • 网络出版日期:  2022-09-07

目录

    /

    返回文章
    返回