留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

丙烷/空气稀薄预混合气流动下的激光点火特性

张俊杰 郭晓阳 王朝君 胡二江 黄佐华

张俊杰, 郭晓阳, 王朝君, 等. 丙烷/空气稀薄预混合气流动下的激光点火特性[J]. 航空动力学报, 2023, 38(3):630-639 doi: 10.13224/j.cnki.jasp.20210449
引用本文: 张俊杰, 郭晓阳, 王朝君, 等. 丙烷/空气稀薄预混合气流动下的激光点火特性[J]. 航空动力学报, 2023, 38(3):630-639 doi: 10.13224/j.cnki.jasp.20210449
ZHANG Junjie, GUO Xiaoyang, WANG Chaojun, et al. Laser ignition characteristics in propane/air lean premixed gas flow[J]. Journal of Aerospace Power, 2023, 38(3):630-639 doi: 10.13224/j.cnki.jasp.20210449
Citation: ZHANG Junjie, GUO Xiaoyang, WANG Chaojun, et al. Laser ignition characteristics in propane/air lean premixed gas flow[J]. Journal of Aerospace Power, 2023, 38(3):630-639 doi: 10.13224/j.cnki.jasp.20210449

丙烷/空气稀薄预混合气流动下的激光点火特性

doi: 10.13224/j.cnki.jasp.20210449
基金项目: 国家科技重大专项(2017- Ⅰ -0007-0033)
详细信息
    作者简介:

    张俊杰(1998-),男,硕士生,主要从事激光点火特性研究

    通讯作者:

    胡二江(1983-),男,教授,博士,主要从事航空发动机点火和燃烧调控研究。E-mail:hujiang@mail.xjtu.edu.cn

  • 中图分类号: V233.3;TK401

Laser ignition characteristics in propane/air lean premixed gas flow

  • 摘要:

    基于流动点火平台,在不同当量比和流速下,对丙烷/空气稀薄预混气进行了激光点火实验。研究发现:随着当量比和流速的增加,火焰发展速度加快且火焰面积增大;火焰中的CH*发光强度随当量比提升有明显提高,通过CH*的分布及发光强度变化能判断火焰发展阶段。混合气的击穿和点火成功率都随当量比和流速的增加而增加,但改变当量比对成功率的影响比改变流速更大;通过击穿发射光谱中的H/N峰值强度比,可以判断混合气中各组分的含量变化,且使用标定线能确定未知预混合气的当量比。

     

  • 图 1  流动管激光点火实验系统图

    Figure 1.  Diagram of laser ignition in flow tube experimental system

    图 2  不同当量比下的火焰发展图片

    Figure 2.  Flame development pictures for different equivalence ratios

    图 3  不同流速下的火焰发展图片

    Figure 3.  Flame development pictures for different velocities of flow

    图 4  不同当量比下的CH*分布

    Figure 4.  CH* distribution for different equivalence ratios

    图 5  不同当量比下的CH*强度

    Figure 5.  CH* intensity for different equivalent ratios

    图 6  不同当量比下的击穿成功率

    Figure 6.  Probability of breakdown for different equivalence ratios

    图 7  不同流速下的击穿成功率

    Figure 7.  Probability of breakdown for different velocities of flow

    图 8  不同点火能量下的点火成功率与当量比的关系

    Figure 8.  Relationship between probability of ignition and equivalent ratio under different ignition energies

    图 9  不同当量比下的点火成功率

    Figure 9.  Probability of ignition for different equivalence ratios

    图 10  不同流速下的点火成功率

    Figure 10.  Probability of breakdown for different velocities of flow

    图 11  不同当量比和流速下的击穿发射光谱

    Figure 11.  Breakdown emission spectra for different equivalent ratios and velocities of flow

    图 12  不同流速下的H/N峰值强度比

    Figure 12.  H/N peak intensity ratio at different velocities of flow

    表  1  实验工况

    Table  1.   Experimental conditions

    实验内容当量比ϕ流速/(m/s)入射能量/mJ
    火焰发展0.63, 0.65, 0.68, 0.70120
    0.58, 0.601,2100
    CH*分布0.65, 0.70150
    击穿0.55, 0.60, 0.65, 0.7017~12
    0.55, 0.701,27~12
    点火0.55, 0.58, 0.60, 0.63, 0.65, 0.68, 0.70120,40,80
    0.55, 0.58, 0.60, 0.63120~120
    0.58, 0.601,220~120
    发射光谱0.40, 0.50, 0.60, 0.70150
    0.55, 0.701,250
    下载: 导出CSV

    表  2  不同当量比的击穿成功率拟合参数及结果

    Table  2.   Fitting parameters and probability of breakdown for different equivalence ratios

    当量比ϕC1C2Eb10/mJEb50/mJEb90/mJ
    0.552.28680.07418.959.8510.85
    0.602.27560.07528.859.7510.72
    0.652.25260.08638.559.5110.62
    0.702.23980.08818.409.3910.54
    下载: 导出CSV

    表  3  不同流速的击穿成功率拟合参数及结果

    Table  3.   Fitting parameters and probability of breakdown for different velocities of flow

    当量比ϕ流速/(m/s)C1C2Eb10/mJEb50/mJEb90/mJ
    0.5512.28680.07418.959.8510.85
    0.7012.23980.08818.409.3910.54
    0.5522.26320.09028.579.6110.80
    0.7022.21370.10318.029.1510.44
    下载: 导出CSV

    表  4  不同当量比的点火成功率拟合参数及结果

    Table  4.   Fitting parameters and probability of ignition for different equivalence ratios

    当量比ϕC1C2E10/mJE50/mJE90/mJ
    0.555.74080.938193.6311.31035.4
    0.584.44040.705834.384.8209.6
    0.603.94520.596724.151.7111.5
    0.633.26990.57526.926.355.0
    下载: 导出CSV

    表  5  不同流速的点火成功率拟合参数及结果

    Table  5.   Fitting parameters and probability of ignition for different velocities of flow

    当量比ϕ流速/(m/s)C1C2E10/mJE50/mJE90/mJ
    0.5814.44040.705834.384.8209.6
    0.6013.94520.596724.151.7111.0
    0.5824.20190.503035.166.8127.3
    0.6023.72470.586119.641.587.9
    下载: 导出CSV

    表  6  不同流速下的H/N谱线强度比拟合参数

    Table  6.   Fitting parameters of H/N spectral line intensity ratio at different velocities of flow

    H/N类型流速/(m/s)截距斜率R2
    H656/N74212.0367611.799810.99913
    H656/N74411.247867.905780.99626
    H656/N74610.797496.045090.99973
    H656/N74222.2974411.392190.99952
    H656/N74421.293927.930070.99628
    H656/N74620.813176.098560.99792
    下载: 导出CSV
  • [1] JOHN H. Internal combustion engine fundamentals[M]. 2nd ed. New York: McGraw-Hill Education, 2018.
    [2] RICHARDSON S,MCMILLIAN M,WOODRUFF S,et al. Misfire, knock and NOx mapping of a laser spark ignited single cylinder lean burn natural gas engine[J]. SAE Technical Papers,2004,113(4): 1853-1863.
    [3] 段景辉. 汽车发动机油耗问题与节能技术研究[J]. 内燃机与配件,2019(19): 30-31. doi: 10.3969/j.issn.1674-957X.2019.19.014

    DUAN Jinghui. Research on fuel consumption and energy saving technology of automobile engine[J]. Internal Combustion Engine and Accessories,2019(19): 30-31. (in Chinese) doi: 10.3969/j.issn.1674-957X.2019.19.014
    [4] RONNEY P D. Laser versus conventional ignition of flames[J]. Optical Engineering,1994,33(2): 510-521. doi: 10.1117/12.152237
    [5] PHUOC T X. Laser-induced spark ignition fundamental and applications[J]. Optics and Lasers in Engineering,2006,44(5): 351-397. doi: 10.1016/j.optlaseng.2005.03.008
    [6] LIOU L C,CULLEY D E. Laser ignition application in a space experiment[J]. The International Society for Optical Engineering,1993,1862: 71-82.
    [7] MANFLETTI C. Laser ignition of an experimental cryogenic reaction and control thruster: ignition energies[J]. Journal of Propulsion and Power,2014,30(4): 952-961. doi: 10.2514/1.B35115
    [8] NAKAYA S,ISEKI S,GU X,et al. Flame kernel formation behaviors in close dual-point laser breakdown spark ignition for lean methane/air mixtures[J]. Proceedings of the Combustion Institute,2017,36(3): 3441-3449. doi: 10.1016/j.proci.2016.07.057
    [9] AN Bin,WANG Zhenguo,YANG Leichao,et al. The ignition characteristics of the close dual-point laser ignition in a cavity-based scramjet combustor[J]. Experimental Thermal and Fluid Science,2019,101: 136-140. doi: 10.1016/j.expthermflusci.2018.10.012
    [10] 朱鸣航,芳心意. 丙烷制丙烯制备技术及安全性分析[J]. 化工安全与环境,2012,4(13): 8-10.

    ZHU Minghang,FANG Xinyi. Preparation and safety analysis of propylene from propane[J]. Chemical Safety and Environment,2012,4(13): 8-10. (in Chinese)
    [11] 金海峰,宋子刚,董辉,等. 使用丙烷模拟航空煤油燃烧特性[J]. 船海工程,2017,46(3): 50-56. doi: 10.3963/j.issn.1671-7953.2017.03.011

    JIN Haifeng,SONG Zigang,DONG Hui,et al. On combustion characteristics of aviation kerosene simulated by propane[J]. Shipbuilding and Sea Engineering,2017,46(3): 50-56. (in Chinese) doi: 10.3963/j.issn.1671-7953.2017.03.011
    [12] ESAKOV I, GRACHEV L, KHODATAEV K, et al. Experiments on propane ignition in high-speed airflow using a deeply under critical microwave discharge[R]. Reno, US: the 42nd AIAA Aerospace Sciences Meeting and Exhibit, 2004.
    [13] LYDIA W,LEFKOWITZ J K,TIMOTHY O,et al. Ignition enhancement by dual-pulse laser-induced spark ignition in a lean premixed methane-air flow[J]. Proceedings of the Combustion Institute,2018,37(4): 5605-5612.
    [14] BEDUNEAU J L,KIM B,ZIMMER L,et al. Measurements of minimum ignition energy in premixed laminar methane/air flow by using laser induced spark[J]. Combustion and Flame,2003,132(4): 653-665. doi: 10.1016/S0010-2180(02)00536-9
    [15] BÖRNER M,MANFLETTI C,KROUPA G,et al. Repetitive laser ignition by optical breakdown of a LOX/H2 rocket combustion chamber with multi-injector head configuration[J]. CEAS Space Journal,2017,9(3): 289-297. doi: 10.1007/s12567-017-0163-7
    [16] AN Bin,WANG Zhenguo,YANG Leichao,et al. Experimental investigation on the impacts of ignition energy and position on ignition processes in supersonic flows by laser induced plasma[J]. Acta Astronautica,2017,137(8): 444-449.
    [17] BANE S,SHEPHERD J E,KWON E,et al. Statistical analysis of electrostatic spark ignition of lean H2/O2/Ar mixtures[J]. International Journal of Hydrogen Energy,2011,36(3): 2344-2350. doi: 10.1016/j.ijhydene.2010.05.082
    [18] RUDZ S,TADINI P,BERTHET F,et al. Effect of low initial pressures on ignition properties of lean and rich n-decane/air mixtures for laser-induced breakdown[J]. Combustion Science and Technology,2018,191(2): 223-242.
    [19] JUN H M,KIM J H,LEE S H,et al. Towards simplified monitoring of instantaneous fuel concentration in both liquid and gas fueled flames using a combustor injectable LIBS plug[J]. Energy,2018,160: 225-232. doi: 10.1016/j.energy.2018.07.016
    [20] 田照华,董美蓉,陆继东,等. LIBS应用于甲烷层流扩散火焰空间分布研究[J]. 激光技术,2018,42(1): 64-69. doi: 10.7510/jgjs.issn.1001-3806.2018.01.012

    TIAN Zhaohua,DONG Meirong,LU Jidong,et al. Application of LIBS to the study of spatial distribution of methane laminar diffusion flame[J]. Laser Technology,2018,42(1): 64-69. (in Chinese) doi: 10.7510/jgjs.issn.1001-3806.2018.01.012
    [21] 左鹏. 激光诱导击穿光谱技术对甲烷空气混合当量比和火焰温度的测量研究[D]. 天津: 天津大学, 2014.

    ZUO Peng. Research on the measurements of equivalence ratio and flame temperature of methane/air mixture by laser-induced breakdown spectroscopy[D]. Tianjin: Tianjin University, 2014. (in Chinese)
  • 加载中
图(12) / 表(6)
计量
  • 文章访问数:  128
  • HTML浏览量:  85
  • PDF量:  49
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-13
  • 网络出版日期:  2022-09-07

目录

    /

    返回文章
    返回