Laser ignition characteristics in propane/air lean premixed gas flow
-
摘要:
基于流动点火平台,在不同当量比和流速下,对丙烷/空气稀薄预混气进行了激光点火实验。研究发现:随着当量比和流速的增加,火焰发展速度加快且火焰面积增大;火焰中的CH*发光强度随当量比提升有明显提高,通过CH*的分布及发光强度变化能判断火焰发展阶段。混合气的击穿和点火成功率都随当量比和流速的增加而增加,但改变当量比对成功率的影响比改变流速更大;通过击穿发射光谱中的H/N峰值强度比,可以判断混合气中各组分的含量变化,且使用标定线能确定未知预混合气的当量比。
Abstract:Based on a flow-ignition platform, laser ignition experiments were carried out on the propane/air lean premixed gas for different equivalence ratios and velocities of flow. The study found that with the increase of the equivalence ratio and velocity of flow, the flame development speed increased and the flame area increased; the CH* luminous intensity in the flame increased significantly with the increase of the equivalence ratio, and the stage of flame development could be judged by the CH* distribution and luminous intensity changes. The probability of successful breakdown and ignition of the mixed-gas increased with the increase of the equivalence ratio and the velocity of flow, but the change of the equivalence ratio had a greater impact on the probability than the velocity of flow; the changes of the content of each component in the mixed gas could be judged by the H/N peak intensity ratio in the breakdown emission spectrum, and the calibration line could determine the equivalence ratio of the unknown premixed gas.
-
表 1 实验工况
Table 1. Experimental conditions
实验内容 当量比ϕ 流速/(m/s) 入射能量/mJ 火焰发展 0.63, 0.65, 0.68, 0.70 1 20 0.58, 0.60 1,2 100 CH*分布 0.65, 0.70 1 50 击穿 0.55, 0.60, 0.65, 0.70 1 7~12 0.55, 0.70 1,2 7~12 点火 0.55, 0.58, 0.60, 0.63, 0.65, 0.68, 0.70 1 20,40,80 0.55, 0.58, 0.60, 0.63 1 20~120 0.58, 0.60 1,2 20~120 发射光谱 0.40, 0.50, 0.60, 0.70 1 50 0.55, 0.70 1,2 50 表 2 不同当量比的击穿成功率拟合参数及结果
Table 2. Fitting parameters and probability of breakdown for different equivalence ratios
当量比ϕ C1 C2 Eb10/mJ Eb50/mJ Eb90/mJ 0.55 2.2868 0.0741 8.95 9.85 10.85 0.60 2.2756 0.0752 8.85 9.75 10.72 0.65 2.2526 0.0863 8.55 9.51 10.62 0.70 2.2398 0.0881 8.40 9.39 10.54 表 3 不同流速的击穿成功率拟合参数及结果
Table 3. Fitting parameters and probability of breakdown for different velocities of flow
当量比ϕ 流速/(m/s) C1 C2 Eb10/mJ Eb50/mJ Eb90/mJ 0.55 1 2.2868 0.0741 8.95 9.85 10.85 0.70 1 2.2398 0.0881 8.40 9.39 10.54 0.55 2 2.2632 0.0902 8.57 9.61 10.80 0.70 2 2.2137 0.1031 8.02 9.15 10.44 表 4 不同当量比的点火成功率拟合参数及结果
Table 4. Fitting parameters and probability of ignition for different equivalence ratios
当量比ϕ C1 C2 E10/mJ E50/mJ E90/mJ 0.55 5.7408 0.9381 93.6 311.3 1035.4 0.58 4.4404 0.7058 34.3 84.8 209.6 0.60 3.9452 0.5967 24.1 51.7 111.5 0.63 3.2699 0.5752 6.9 26.3 55.0 表 5 不同流速的点火成功率拟合参数及结果
Table 5. Fitting parameters and probability of ignition for different velocities of flow
当量比ϕ 流速/(m/s) C1 C2 E10/mJ E50/mJ E90/mJ 0.58 1 4.4404 0.7058 34.3 84.8 209.6 0.60 1 3.9452 0.5967 24.1 51.7 111.0 0.58 2 4.2019 0.5030 35.1 66.8 127.3 0.60 2 3.7247 0.5861 19.6 41.5 87.9 表 6 不同流速下的H/N谱线强度比拟合参数
Table 6. Fitting parameters of H/N spectral line intensity ratio at different velocities of flow
H/N类型 流速/(m/s) 截距 斜率 R2 H656/N742 1 2.03676 11.79981 0.99913 H656/N744 1 1.24786 7.90578 0.99626 H656/N746 1 0.79749 6.04509 0.99973 H656/N742 2 2.29744 11.39219 0.99952 H656/N744 2 1.29392 7.93007 0.99628 H656/N746 2 0.81317 6.09856 0.99792 -
[1] JOHN H. Internal combustion engine fundamentals[M]. 2nd ed. New York: McGraw-Hill Education, 2018. [2] RICHARDSON S,MCMILLIAN M,WOODRUFF S,et al. Misfire, knock and NOx mapping of a laser spark ignited single cylinder lean burn natural gas engine[J]. SAE Technical Papers,2004,113(4): 1853-1863. [3] 段景辉. 汽车发动机油耗问题与节能技术研究[J]. 内燃机与配件,2019(19): 30-31. doi: 10.3969/j.issn.1674-957X.2019.19.014DUAN Jinghui. Research on fuel consumption and energy saving technology of automobile engine[J]. Internal Combustion Engine and Accessories,2019(19): 30-31. (in Chinese) doi: 10.3969/j.issn.1674-957X.2019.19.014 [4] RONNEY P D. Laser versus conventional ignition of flames[J]. Optical Engineering,1994,33(2): 510-521. doi: 10.1117/12.152237 [5] PHUOC T X. Laser-induced spark ignition fundamental and applications[J]. Optics and Lasers in Engineering,2006,44(5): 351-397. doi: 10.1016/j.optlaseng.2005.03.008 [6] LIOU L C,CULLEY D E. Laser ignition application in a space experiment[J]. The International Society for Optical Engineering,1993,1862: 71-82. [7] MANFLETTI C. Laser ignition of an experimental cryogenic reaction and control thruster: ignition energies[J]. Journal of Propulsion and Power,2014,30(4): 952-961. doi: 10.2514/1.B35115 [8] NAKAYA S,ISEKI S,GU X,et al. Flame kernel formation behaviors in close dual-point laser breakdown spark ignition for lean methane/air mixtures[J]. Proceedings of the Combustion Institute,2017,36(3): 3441-3449. doi: 10.1016/j.proci.2016.07.057 [9] AN Bin,WANG Zhenguo,YANG Leichao,et al. The ignition characteristics of the close dual-point laser ignition in a cavity-based scramjet combustor[J]. Experimental Thermal and Fluid Science,2019,101: 136-140. doi: 10.1016/j.expthermflusci.2018.10.012 [10] 朱鸣航,芳心意. 丙烷制丙烯制备技术及安全性分析[J]. 化工安全与环境,2012,4(13): 8-10.ZHU Minghang,FANG Xinyi. Preparation and safety analysis of propylene from propane[J]. Chemical Safety and Environment,2012,4(13): 8-10. (in Chinese) [11] 金海峰,宋子刚,董辉,等. 使用丙烷模拟航空煤油燃烧特性[J]. 船海工程,2017,46(3): 50-56. doi: 10.3963/j.issn.1671-7953.2017.03.011JIN Haifeng,SONG Zigang,DONG Hui,et al. On combustion characteristics of aviation kerosene simulated by propane[J]. Shipbuilding and Sea Engineering,2017,46(3): 50-56. (in Chinese) doi: 10.3963/j.issn.1671-7953.2017.03.011 [12] ESAKOV I, GRACHEV L, KHODATAEV K, et al. Experiments on propane ignition in high-speed airflow using a deeply under critical microwave discharge[R]. Reno, US: the 42nd AIAA Aerospace Sciences Meeting and Exhibit, 2004. [13] LYDIA W,LEFKOWITZ J K,TIMOTHY O,et al. Ignition enhancement by dual-pulse laser-induced spark ignition in a lean premixed methane-air flow[J]. Proceedings of the Combustion Institute,2018,37(4): 5605-5612. [14] BEDUNEAU J L,KIM B,ZIMMER L,et al. Measurements of minimum ignition energy in premixed laminar methane/air flow by using laser induced spark[J]. Combustion and Flame,2003,132(4): 653-665. doi: 10.1016/S0010-2180(02)00536-9 [15] BÖRNER M,MANFLETTI C,KROUPA G,et al. Repetitive laser ignition by optical breakdown of a LOX/H2 rocket combustion chamber with multi-injector head configuration[J]. CEAS Space Journal,2017,9(3): 289-297. doi: 10.1007/s12567-017-0163-7 [16] AN Bin,WANG Zhenguo,YANG Leichao,et al. Experimental investigation on the impacts of ignition energy and position on ignition processes in supersonic flows by laser induced plasma[J]. Acta Astronautica,2017,137(8): 444-449. [17] BANE S,SHEPHERD J E,KWON E,et al. Statistical analysis of electrostatic spark ignition of lean H2/O2/Ar mixtures[J]. International Journal of Hydrogen Energy,2011,36(3): 2344-2350. doi: 10.1016/j.ijhydene.2010.05.082 [18] RUDZ S,TADINI P,BERTHET F,et al. Effect of low initial pressures on ignition properties of lean and rich n-decane/air mixtures for laser-induced breakdown[J]. Combustion Science and Technology,2018,191(2): 223-242. [19] JUN H M,KIM J H,LEE S H,et al. Towards simplified monitoring of instantaneous fuel concentration in both liquid and gas fueled flames using a combustor injectable LIBS plug[J]. Energy,2018,160: 225-232. doi: 10.1016/j.energy.2018.07.016 [20] 田照华,董美蓉,陆继东,等. LIBS应用于甲烷层流扩散火焰空间分布研究[J]. 激光技术,2018,42(1): 64-69. doi: 10.7510/jgjs.issn.1001-3806.2018.01.012TIAN Zhaohua,DONG Meirong,LU Jidong,et al. Application of LIBS to the study of spatial distribution of methane laminar diffusion flame[J]. Laser Technology,2018,42(1): 64-69. (in Chinese) doi: 10.7510/jgjs.issn.1001-3806.2018.01.012 [21] 左鹏. 激光诱导击穿光谱技术对甲烷空气混合当量比和火焰温度的测量研究[D]. 天津: 天津大学, 2014.ZUO Peng. Research on the measurements of equivalence ratio and flame temperature of methane/air mixture by laser-induced breakdown spectroscopy[D]. Tianjin: Tianjin University, 2014. (in Chinese)