Experiment and numerical investigation on tip flow instabilities of compressors
-
摘要:
为了研究大叶顶间隙下压气机的流动失稳演化过程和物理机理,以某单级轴流压气机试验台为研究对象,利用布置于机匣壁面的动态压力传感器测量叶顶流场的脉动特征,利用全通道数值模拟获得与流场失稳发展相关的非定常流动细节。结果表明:随着流量减小压气机内部流动经历了稳定状态、旋转不稳定性和旋转失速3个阶段,叶顶泄漏涡的两种临界行为与不稳定性模式的转变有关。当叶顶泄漏涡移动到相邻叶片尾缘时,在与相邻叶片的干涉作用下开始随时间振荡,导致了小尺度的扰动沿周向传播,即旋转不稳定性。在近失速工况下,叶顶泄漏涡与主流交界面超过叶片流道进口平面,导致前缘溢流,并伴随着前缘径向涡的周期性产生、周向迁移和衰减。此时,前缘径向涡沿周向几乎呈均匀分布,构成了有序传播的扰动。随着压气机被进一步节流,前缘径向涡的有序传播被破坏,形成了局部聚集的分布特征,从而产生了局部堵塞更强、熵更高的失速团。
Abstract:To study the tip clearance flow instability of evolution and the physical mechanism of the compressor, a single stage axial compressor experimental rig was taken as the research object. Using the dynamic pressure sensors in the casing wall, the oscillating characteristics of tip flow field were acquired. The unsteady development of flow details was obtained by full channel calculations. It was found that with the decrease of the flow rate, the internal flow of the compressor went through three phases: steady state, rotating instability and rotating stall. The two pivotal activities of the tip clearance vortex were related to the transformation of the instability mode. When the tip clearance vortices propagated to the trailing edge of the neighboring blade, it began to fluctuate under the interference with the neighboring blade, resulting in small scale disturbance propagating along the circumference, that was, rotational instability. In near-stall state, the interface between tip clearance vortices and incoming flow exceeded the inlet of the blade channel, leading to leading edge overflow, which was accompanied by periodic production, circumstantial migration and attenuation of leading edge radial vortices. At this time, the leading edge radial vortices were almost uniformly distributed along the circumferential direction, which constituted the organized propagating disturbance. However, as the flow rate further reduced, the organized propagation of the leading edge radial vortex was destroyed, forming the distribution feature of local aggregation, leading to the stall cells with stronger local blockage and higher entropy.
-
Key words:
- compressors /
- dynamic pressure measurement /
- tip clearance flow /
- flow instabilities /
- rotating stall
-
表 1 压气机关键设计参数
Table 1. Key design parameters of the compressor
参数 数值 直径/mm 600 轮毂比 0.7 设计转速/(r/min) 3000 设计流量/(kg/s) 4.9 进口导叶数 13 叶片数 21 展弦比 1.41 稠度 1.598 转子叶顶间隙 2.2%H 转子叶顶间隙 3.1%C 叶顶线速度/(m/s) 93.62 -
[1] MOORE F K,GREITZER E M. A theory of post-stall transients in axial compression systems: Part Ⅰ development of equations[J]. Journal of Engineering for Gas Turbines and Power,1986,108(1): 68-76. doi: 10.1115/1.3239887 [2] CAMP T R,DAY I J. A study of spike and modal stall inception in a low-speed axial compressor[J]. Journal of Turbomachinery,1998,120(1): 393-401. [3] RIGHI M,PACHIIS V,KONOSY L,et al. Three-dimensional through-flow modelling of axial flow compressor rotating stall and surge[J]. Aerospace Science and Technology,2018,78: 271-279. doi: 10.1016/j.ast.2018.04.021 [4] MZDOUGALL N M,CUMPSTY N A,HYNES T P. Stall inception in axial compressor[J]. Journal of Turbomachinery,1990,112(1): 116-125. doi: 10.1115/1.2927406 [5] GARNIER V H, EPSTEIN A H, GREITZER E M. Rotating waves as a stall inception indication in axial compressors[J]. Journal of Turbomachinery, 1991, 113(2): 290-302. [6] WEICHART S, DAY J. Detailed measurements of spike formation in an axial compressor[J]. Journal of Turbomachinery, 2014, 136 (5): 051006.1-051006.9. [7] KHALEGHI H. Stall inception and control in a transonic fan: Part A rotating stall inception[J]. Aerospace Science and Technology, 2015, 41: 250-258. [8] LI Jichao,GENG Shaojuan,DU Juan,et al. Circumferentially propagating characteristic dominated by unsteady tip leakage flow in axial flow compressors[J]. Aerospace Science and Technology,2019,85: 529-543. doi: 10.1016/j.ast.2018.11.058 [9] ZHANG Haideng,YU Xianjun,LIU Baojie,et al. Using wavelets to study spike-type compressor rotating stall inception[J]. Aerospace Science and Technology,2016,58: 467-479. doi: 10.1016/j.ast.2016.09.006 [10] BERGNER J, KINZEL M, SCHIFFER H P. Short length-scale rotating stall inception in a transonic axial compressor: experimental investigation[R]. ASME Paper GT2006-90209, 2006. [11] BIELA C, MULLER M W, SEHIFFER H P, et al. Unsteady pressure measurement in a single stage axial transonic compressor near the stability limit[R]. ASME Paper GT2008-50245, 2008. [12] HAH C, VOGES M, MUELLER M, et al. Characteristics of clearance flow instability in a transonic compressor[R]. ASME Paper GT2010-22101, 2010. [13] DHINGRA M,NEUMEIER Y,PRASAD J V R,et al. A stochastic model for a compressor stability measure[J]. Journal of Engineering for Gas Turbines and Power,2007,129(3): 730-737. doi: 10.1115/1.2718231 [14] LIU Yuan,DHINGRA M,PRASAD J V R. Active compressor stability management via a stall margin control mode[J]. Journal of Engineering for Gas Turbines and Power,2010,132(5): 730-737. [15] CHRISTENSEN D, CANTIN P, GUTZ D, et al. Development and demonstration of a stability management system for gas turbine engines[J]. Journal of Turbomachinery, 2006, 130(3): 031011.1-031011. 9. [16] YOUNG A, DAY J, PULLAN G. Stall warning by blade pressure signature analysis[J]. Journal of Turbomachinery, 2011, 135(1): 011033.1- 011033.10 . [17] HOEGER M, LAHMER M, DUPSLAFF M, et al. A correlation for tip leakage blockage in compressor blade passages[J]. Journal of Turbomachinery, 2000, 122(2): 426-432. [18] 赖生智,吴亚东,田杰,等. 不同叶顶间隙下压气机旋转不稳定性特性[J]. 上海交通大学学报,2020,54(3): 265-276. doi: 10.16183/j.cnki.jsjtu.2020.03.006LAI Shengzhi,WU Yadong,TIAN Jie,et al. Rotating instability characteristics in compressor with different tip clearance[J]. Journal of Shanghai Jiao Tong University,2020,54(3): 265-276. (in Chinese) doi: 10.16183/j.cnki.jsjtu.2020.03.006 [19] WANG Zhiqiang,LU Bo,LIU Jianxin,et al. Numerical simulation of unsteady tip clearance flow in a transonic compressor rotor[J]. Aerospace Science and Technology,2018,72: 193-203. doi: 10.1016/j.ast.2017.11.012 [20] DAY I J. Stall, surge and 75 years of research[J]. Journal of Turbomachinery,2016,138(1): 011004.1-011004.16. [21] MARZ J, HAH C, NEISE W. An experimental and numerical investigation into the mechanisms of rotating instability[R]. ASME Paper 2001-GT-0536, 2001. [22] MAILACH R, LEHMANN I, VOGELER K. Rotating instabilities in an axial compressor originating from the fluctuating blade tip vortex[J]. Journal of Turbomachinery, 2001, 123(3): 453-460. [23] INOUE M, KUROUMARU M, YSHIDA S, et al. Effect of tip clearance on stall evolution process in a low-speed axial compressor stage[R]. ASME Paper GT2004-53354, 2004. [24] YAMADA K, KIKUDA H, FURUKAWA M, et al. Effects of tip clearance on the stall inception process in an axial compressor rotor[R]. ASME Paper GT2013-95479, 2013. [25] ECK M,GEIST S,PEITSCH D. Physics of prestall propagating disturbances in axial compressors and their potential as a stall warning indicator[J]. Applied Sciences,2017,7(3): 285-299. doi: 10.3390/app7030285 [26] LIU M J, HOLSTE F, NEISE W. On the azimuthal mode structure of rotating blade flow instabilities in axial turbomachines[R]. AIAA 96-1741, 1996. [27] 王昊,吴亚东,欧阳华. 低速轴流压气机旋转不稳定性数值研究[J]. 工程热物理学报,2019,40(3): 551-558.WANG Hao,WU Yadong,OUYANG Hua. Numerical investigations of instability in a low speed axial compressor[J]. Journal of Engineering Thermophysics,2019,40(3): 551-558. (in Chinese) [28] JEONG J,HUSSAIN F. On the identification of a vortex[J]. Journal of Fluid Mechanics,1995,285: 69-94. doi: 10.1017/S0022112095000462