留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

压气机叶顶流动不稳定性试验和数值研究

王昊 王牌 向宏辉 张建武 王掩刚

王昊, 王牌, 向宏辉, 等. 压气机叶顶流动不稳定性试验和数值研究[J]. 航空动力学报, 2023, 38(3):674-684 doi: 10.13224/j.cnki.jasp.20210452
引用本文: 王昊, 王牌, 向宏辉, 等. 压气机叶顶流动不稳定性试验和数值研究[J]. 航空动力学报, 2023, 38(3):674-684 doi: 10.13224/j.cnki.jasp.20210452
WANG Hao, WANG Pai, XIANG Honghui, et al. Experiment and numerical investigation on tip flow instabilities of compressors[J]. Journal of Aerospace Power, 2023, 38(3):674-684 doi: 10.13224/j.cnki.jasp.20210452
Citation: WANG Hao, WANG Pai, XIANG Honghui, et al. Experiment and numerical investigation on tip flow instabilities of compressors[J]. Journal of Aerospace Power, 2023, 38(3):674-684 doi: 10.13224/j.cnki.jasp.20210452

压气机叶顶流动不稳定性试验和数值研究

doi: 10.13224/j.cnki.jasp.20210452
基金项目: 国家自然科学基金(51906205); 国家科技重大专项(J2019-Ⅱ-0020-0041)
详细信息
    作者简介:

    王昊(1986-),男,讲师,博士,主要从事叶轮机械非定常流动及压气机不稳定性研究。E-mail:wanghao@nwpu.edu.cn

  • 中图分类号: V231.3

Experiment and numerical investigation on tip flow instabilities of compressors

  • 摘要:

    为了研究大叶顶间隙下压气机的流动失稳演化过程和物理机理,以某单级轴流压气机试验台为研究对象,利用布置于机匣壁面的动态压力传感器测量叶顶流场的脉动特征,利用全通道数值模拟获得与流场失稳发展相关的非定常流动细节。结果表明:随着流量减小压气机内部流动经历了稳定状态、旋转不稳定性和旋转失速3个阶段,叶顶泄漏涡的两种临界行为与不稳定性模式的转变有关。当叶顶泄漏涡移动到相邻叶片尾缘时,在与相邻叶片的干涉作用下开始随时间振荡,导致了小尺度的扰动沿周向传播,即旋转不稳定性。在近失速工况下,叶顶泄漏涡与主流交界面超过叶片流道进口平面,导致前缘溢流,并伴随着前缘径向涡的周期性产生、周向迁移和衰减。此时,前缘径向涡沿周向几乎呈均匀分布,构成了有序传播的扰动。随着压气机被进一步节流,前缘径向涡的有序传播被破坏,形成了局部聚集的分布特征,从而产生了局部堵塞更强、熵更高的失速团。

     

  • 图 1  压气机试验台示意图

    Figure 1.  Schematic diagram of the compressor experiment rig

    图 2  动态压力测试布局示意图

    Figure 2.  Setup schematic diagram of time-resolved pressure measurements

    图 3  压气机气动特性线(试验测量和数值模拟)

    Figure 3.  Performance curve of compressor (experiment measurement and numerical simulation)

    图 4  动态压力时间序列和频谱(试验结果)

    Figure 4.  Time traces and frequency spectra of dynamic pressure (experimental result)

    图 5  RI2工况下动态压力的频率谱、相干系数谱和相位谱(试验结果)

    Figure 5.  Spectra of frequency, coherence and phase angle of measured unsteady pressure at RI2 condition (experimental result)

    图 6  压气机计算网格细节

    Figure 6.  Compressor calculated mesh details

    图 7  RI2和RS工况下测试和计算的动态压力频谱对比

    Figure 7.  Comparison of measured and calculated dynamic pressure spectra at RI2 and RS condition

    图 8  RI1工况下瞬态叶顶泄漏涡结构($ {\lambda }_{2} $判据)和叶片表面静压系数

    Figure 8.  Instants of tip leakage vortex structure ($ {\lambda }_{2} $ criterion ) and blade surface pressure at RI1 condition

    图 9  RI1工况下98%相对叶高下不同时刻叶片表面压力系数和叶尖泄漏速度弦向分布

    Figure 9.  Pressure coefficient of blade surface at 98% relative blade height and blade tip leakage velocity distribution for different instants at RI1 condition

    图 10  RI2工况下的叶顶间隙blade to blade截面流线及静压系数分布

    Figure 10.  Distribution of blade to blade section streamline and static pressure coefficient of tip clearance at RI2 condition

    图 11  RI3工况下前缘径向涡流线($ {\lambda }_{2} $准则)

    Figure 11.  Leading edge vortex streamlines at RI3 condition ($ {\lambda }_{2} $ criterion )

    图 12  RI3工况下前缘涡动力学的瞬态演化

    Figure 12.  Transients evolution of leading edge vortex dynamics at RI3 conditions

    图 13  RI3和RS工况下叶顶静压分布和RS工况下叶顶熵的分布

    Figure 13.  Distribution of blade tip static pressure distribution at RI3 and RS condition and blade tip entropy distribution at RS conditionn

    表  1  压气机关键设计参数

    Table  1.   Key design parameters of the compressor

    参数数值
    直径/mm600
    轮毂比0.7
    设计转速/(r/min)3000
    设计流量/(kg/s)4.9
    进口导叶数13
    叶片数21
    展弦比1.41
    稠度1.598
    转子叶顶间隙2.2%H
    转子叶顶间隙3.1%C
    叶顶线速度/(m/s)93.62
    下载: 导出CSV
  • [1] MOORE F K,GREITZER E M. A theory of post-stall transients in axial compression systems: Part Ⅰ development of equations[J]. Journal of Engineering for Gas Turbines and Power,1986,108(1): 68-76. doi: 10.1115/1.3239887
    [2] CAMP T R,DAY I J. A study of spike and modal stall inception in a low-speed axial compressor[J]. Journal of Turbomachinery,1998,120(1): 393-401.
    [3] RIGHI M,PACHIIS V,KONOSY L,et al. Three-dimensional through-flow modelling of axial flow compressor rotating stall and surge[J]. Aerospace Science and Technology,2018,78: 271-279. doi: 10.1016/j.ast.2018.04.021
    [4] MZDOUGALL N M,CUMPSTY N A,HYNES T P. Stall inception in axial compressor[J]. Journal of Turbomachinery,1990,112(1): 116-125. doi: 10.1115/1.2927406
    [5] GARNIER V H, EPSTEIN A H, GREITZER E M. Rotating waves as a stall inception indication in axial compressors[J]. Journal of Turbomachinery, 1991, 113(2): 290-302.
    [6] WEICHART S, DAY J. Detailed measurements of spike formation in an axial compressor[J]. Journal of Turbomachinery, 2014, 136 (5): 051006.1-051006.9.
    [7] KHALEGHI H. Stall inception and control in a transonic fan: Part A rotating stall inception[J]. Aerospace Science and Technology, 2015, 41: 250-258.
    [8] LI Jichao,GENG Shaojuan,DU Juan,et al. Circumferentially propagating characteristic dominated by unsteady tip leakage flow in axial flow compressors[J]. Aerospace Science and Technology,2019,85: 529-543. doi: 10.1016/j.ast.2018.11.058
    [9] ZHANG Haideng,YU Xianjun,LIU Baojie,et al. Using wavelets to study spike-type compressor rotating stall inception[J]. Aerospace Science and Technology,2016,58: 467-479. doi: 10.1016/j.ast.2016.09.006
    [10] BERGNER J, KINZEL M, SCHIFFER H P. Short length-scale rotating stall inception in a transonic axial compressor: experimental investigation[R]. ASME Paper GT2006-90209, 2006.
    [11] BIELA C, MULLER M W, SEHIFFER H P, et al. Unsteady pressure measurement in a single stage axial transonic compressor near the stability limit[R]. ASME Paper GT2008-50245, 2008.
    [12] HAH C, VOGES M, MUELLER M, et al. Characteristics of clearance flow instability in a transonic compressor[R]. ASME Paper GT2010-22101, 2010.
    [13] DHINGRA M,NEUMEIER Y,PRASAD J V R,et al. A stochastic model for a compressor stability measure[J]. Journal of Engineering for Gas Turbines and Power,2007,129(3): 730-737. doi: 10.1115/1.2718231
    [14] LIU Yuan,DHINGRA M,PRASAD J V R. Active compressor stability management via a stall margin control mode[J]. Journal of Engineering for Gas Turbines and Power,2010,132(5): 730-737.
    [15] CHRISTENSEN D, CANTIN P, GUTZ D, et al. Development and demonstration of a stability management system for gas turbine engines[J]. Journal of Turbomachinery, 2006, 130(3): 031011.1-031011. 9.
    [16] YOUNG A, DAY J, PULLAN G. Stall warning by blade pressure signature analysis[J]. Journal of Turbomachinery, 2011, 135(1): 011033.1- 011033.10 .
    [17] HOEGER M, LAHMER M, DUPSLAFF M, et al. A correlation for tip leakage blockage in compressor blade passages[J]. Journal of Turbomachinery, 2000, 122(2): 426-432.
    [18] 赖生智,吴亚东,田杰,等. 不同叶顶间隙下压气机旋转不稳定性特性[J]. 上海交通大学学报,2020,54(3): 265-276. doi: 10.16183/j.cnki.jsjtu.2020.03.006

    LAI Shengzhi,WU Yadong,TIAN Jie,et al. Rotating instability characteristics in compressor with different tip clearance[J]. Journal of Shanghai Jiao Tong University,2020,54(3): 265-276. (in Chinese) doi: 10.16183/j.cnki.jsjtu.2020.03.006
    [19] WANG Zhiqiang,LU Bo,LIU Jianxin,et al. Numerical simulation of unsteady tip clearance flow in a transonic compressor rotor[J]. Aerospace Science and Technology,2018,72: 193-203. doi: 10.1016/j.ast.2017.11.012
    [20] DAY I J. Stall, surge and 75 years of research[J]. Journal of Turbomachinery,2016,138(1): 011004.1-011004.16.
    [21] MARZ J, HAH C, NEISE W. An experimental and numerical investigation into the mechanisms of rotating instability[R]. ASME Paper 2001-GT-0536, 2001.
    [22] MAILACH R, LEHMANN I, VOGELER K. Rotating instabilities in an axial compressor originating from the fluctuating blade tip vortex[J]. Journal of Turbomachinery, 2001, 123(3): 453-460.
    [23] INOUE M, KUROUMARU M, YSHIDA S, et al. Effect of tip clearance on stall evolution process in a low-speed axial compressor stage[R]. ASME Paper GT2004-53354, 2004.
    [24] YAMADA K, KIKUDA H, FURUKAWA M, et al. Effects of tip clearance on the stall inception process in an axial compressor rotor[R]. ASME Paper GT2013-95479, 2013.
    [25] ECK M,GEIST S,PEITSCH D. Physics of prestall propagating disturbances in axial compressors and their potential as a stall warning indicator[J]. Applied Sciences,2017,7(3): 285-299. doi: 10.3390/app7030285
    [26] LIU M J, HOLSTE F, NEISE W. On the azimuthal mode structure of rotating blade flow instabilities in axial turbomachines[R]. AIAA 96-1741, 1996.
    [27] 王昊,吴亚东,欧阳华. 低速轴流压气机旋转不稳定性数值研究[J]. 工程热物理学报,2019,40(3): 551-558.

    WANG Hao,WU Yadong,OUYANG Hua. Numerical investigations of instability in a low speed axial compressor[J]. Journal of Engineering Thermophysics,2019,40(3): 551-558. (in Chinese)
    [28] JEONG J,HUSSAIN F. On the identification of a vortex[J]. Journal of Fluid Mechanics,1995,285: 69-94. doi: 10.1017/S0022112095000462
  • 加载中
图(13) / 表(1)
计量
  • 文章访问数:  172
  • HTML浏览量:  118
  • PDF量:  70
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-15
  • 网络出版日期:  2022-09-07

目录

    /

    返回文章
    返回