Analysis and control of dummy balance process of aero-engine high pressure rotor
-
摘要:
针对大涵道比航空发动机高压转子采用模拟平衡工艺缺少数学分析手段以及模拟转子技术指标缺少制定依据的问题,提出一种模拟平衡工艺量化分析方法。以过转子重心的静和偶不平衡矢量来表示转子不平衡状态,定义了包含质量偏差、重心位置偏差、转动惯量偏差和端跳偏差的模拟转子模型,结合模拟平衡过程和转位平衡原理,建立转子校正不平衡量和转位补偿量数学模型,以高压组合转子初始不平衡量来评估模拟平衡质量。结果表明:模拟平衡能替代组合平衡,被平衡的两个转子均具备装配互换性和装配对接角度不受限制的特点;本案例中为控制模拟平衡质量,模拟转子质量偏差应在±4%以内,重心位置偏差应在±2 mm以内,直径和极转动惯量偏差均应在±5%以内,端跳偏差应小于0.008 mm。
Abstract:In view of the lack of mathematical analysis means of dummy balance process for high pressure rotor of high bypass ratio aero-engine and the lack of basis for technical indexes of dummy rotor, a quantitative analysis method of dummy balance process was proposed. The rotor unbalance state was represented by the static and couple unbalance vector passing through the rotor center of gravity. The dummy rotor model including weight deviation, center of gravity position deviation, moment of inertia deviation and end runout deviation was defined. Combined with the dummy balance process of high pressure rotor and the principle of index balance, the mathematical model of rotor correction unbalance and index compensation was established. And, the initial unbalance of high pressure combined rotor was used to evaluate the dummy balance quality. Results showed that, the dummy balance can replace the combined balance, and the two balanced rotors had the characteristics of assembly interchangeability and unrestricted assembly docking angle; in this case, in order to control the dummy balance quality, the dummy rotor weight deviation should be within ±4%, the center of gravity position deviation should be within ±2 mm, the diameter and polar moment of inertia deviation should be within ±5%, and the end runout deviation should be less than 0.008 mm.
-
Key words:
- high pressure rotor /
- dummy balance /
- balance process /
- dummy rotor deviation /
- balance control
-
表 1 某发动机高压转子结构参数和模拟转子参数
Table 1. Structural parameters and dummy rotor parameters of high pressure rotor of an engine
转子类型 参数 数值 高压压气机转子 m1/105g 1.1 L11/mm 400 L12/mm 300 D/mm 400 Δ1/mm 0.03 ΔJ1/109(g·mm2) 3.9 许用剩余不平衡量/(g·mm) 77(每面) 高压涡轮转子 m2/105 g 1.5 L21/mm 350 L22/mm 200 Δ2/mm 0.01 ΔJ2/108(g·mm2) −4.0 许用剩余不平衡量/(g·mm) 105(每面) 高压组合转子 许用剩余不平衡量/(g·mm) 183(每面) 模拟高压
压气机转子Δmc/g −4400 ΔLc/mm −0.5 ΔJc/108 (g·mm2) −5.58 Δc/mm 0.01 模拟高压
涡轮转子Δmt/g −6000 ΔLt/mm 0.5 ΔJt/108 (g·mm2) 4.92 Δt/mm 0.01 表 2 采用不同平衡工艺的平衡结果
Table 2. Balance results of different balance processes
工艺方法 前端 后端 不平衡量/
(g·mm)相位角/
(°)不平衡量/
(g·mm)相位角/
(°)组合平衡工艺 960 48 1 864 36 模拟平衡工艺 291 3 183 307 -
[1] 刘永泉,王德友,洪杰,等. 航空发动机整机振动控制技术分析[J]. 航空发动机,2013,39(5): 1-8. doi: 10.3969/j.issn.1672-3147.2013.05.001LIU Yongquan,WANG Deyou,HONG Jie,et al. Analysis of whole aeroengine vibration control technology[J]. Aeroengine,2013,39(5): 1-8. (in Chinese) doi: 10.3969/j.issn.1672-3147.2013.05.001 [2] 艾延廷,周海仑,孙丹,等. 航空发动机整机振动分析与控制[J]. 沈阳航空航天大学学报,2015,32(5): 1-25. doi: 10.3969/j.issn.2095-1248.2015.05.001AI Yanting,ZHOU Hailun,SUN Dan,et al. Study on the control of the whole aero-engine vibration[J]. Journal of Shenyang Aerospace University,2015,32(5): 1-25. (in Chinese) doi: 10.3969/j.issn.2095-1248.2015.05.001 [3] 陈果,杨默晗,于平超. 基于深度学习的航空发动机不平衡故障部位识别[J]. 航空动力学报,2020,35(12): 2602-2615. doi: 10.13224/j.cnki.jasp.2020.12.014CHEN Guo,YANG Mohan,YU Pingchao. Aero-engine unbalanced fault location identification method based on deep learning[J]. Journal of Aerospace Power,2020,35(12): 2602-2615. (in Chinese) doi: 10.13224/j.cnki.jasp.2020.12.014 [4] CHU F L,LU W X. Experimental observation of nonlinear vibrations in a rub-impact rotor system[J]. Journal of Sound and Vibration,2005,283(3/4/5): 621-643. [5] AL-HUSSAIN K M,REDMOND I. Dynamic response of two rotors connected by rigid mechanical coupling with parallel misalignment[J]. Journal of Sound and Vibration,2002,249(3): 483-498. doi: 10.1006/jsvi.2001.3866 [6] 孙贵青,赵哲,孙慧洁,等. CFM56发动机高压压气机转子平衡工艺分析[J]. 航空发动机,2020,46(6): 92-97. doi: 10.13477/j.cnki.aeroengine.2020.06.015SUN Guiqing,ZHAO Zhe,SUN Huijie,et al. Analysis on the balance process of CFM56 engine high-pressure compressor rotor[J]. Aeroengine,2020,46(6): 92-97. (in Chinese) doi: 10.13477/j.cnki.aeroengine.2020.06.015 [7] 刘丛辉,王娜,陈玲玲. 模拟平衡工艺方法在新一代航空发动机转子动平衡中的应用[J]. 航空制造技术,2012,55(15): 77-80. doi: 10.3969/j.issn.1671-833X.2012.15.013LIU Conghui,WANG Na,CHEN Lingling. Application of analog balancing process for new generation aeroengine rotor dynamic balancing[J]. Aeronautical Manufacturing Technology,2012,55(15): 77-80. (in Chinese) doi: 10.3969/j.issn.1671-833X.2012.15.013 [8] Society of Automotive Engineers (SAE) EG-1A Committee. Balancing machines: tooling design criteria: SAE ARP 4163[S]. Warrendale, US: SAE International, 2016: 26-38. [9] 哈托•施耐德. 平衡技术理论与实践[M]. 廖日岳, 译.北京: 机械工业出版社, 1981. [10] PARKINSON A G. Balancing of rotating machinery[J]. Journal of Mechanical Engineering Science,1991,205(1): 53-66. [11] FOILES W C,ALLAIRE P E,GUNTER E J. Review: rotor balancing[J]. Shock and Vibration,1998,5(5/6): 325-336. [12] DARLOW M S. Balancing of high-speed machinery[M]. New York: Springer-Verlag, 1989. [13] EVERETT L J. Optimal two-plane balance of rigid rotors[J]. Journal of Sound and Vibration,1997,208(4): 656-663. doi: 10.1006/jsvi.1997.1211 [14] KANG Y,SHEEN G J,TANG P H. The principle and applications of multi-plane separation for balancing machines[J]. Journal of Sound and Vibration,1997,208(2): 167-173. doi: 10.1006/jsvi.1997.1123 [15] RACIC Z, HIDALGO J. Practical balancing of flexible rotors for power generation[C]// Proceedings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. Las Vegas, US: ASME, 2007: 1-10. [16] UNTAROIU C D,ALLAIRE P E,FOILES W C. Balancing of flexible rotors using convex optimization techniques: optimum min-max LMI influence coefficient balancing[J]. Journal of Vibration and Acoustics Stress and Reliability in Design,2008,130(2): 1-5. [17] DEEPTHIKUMAR M B,SEKHAR A S,SRIKANTHAN M R. Modal balancing of flexible rotors with bow and distributed unbalance[J]. Journal of Sound and Vibration,2013,332(24): 6216-6233. doi: 10.1016/j.jsv.2013.04.043 [18] GREKOV Y M,RADCHIK I I,TRUNIN E S,et al. Balancing a high-speed rotor on a balancing machine[J]. Journal of Power Technology and Engineering,2015,49(1): 57-60. doi: 10.1007/s10749-015-0574-6 [19] MENDES R U,DOHNAL F. Modal balancing using parametric combination resonance[J]. Journal of Mechanisms and Machine Science,2019,63(4): 129-144. [20] EI-SHAFEI A,EI-KABBANY A S,YOUNAN A A. Rotor balancing without trial weights[J]. Journal of Engineering for Gas Turbines and Power,2004,126(3): 604-609. doi: 10.1115/1.1762903 [21] LI X F,ZHENG L X,LIU Z X. Balancing of flexible rotors without trial weights based on finite element modal analysis[J]. Journal of Vibration and Control,2013,19(3): 461-470. doi: 10.1177/1077546311433916 [22] KHULIEF Y A,MOHIUDDIN M A,EI-GEBEILY M. A new method for field-balancing of high-speed flexible rotors without trial weights[J]. International Journal of Rotating Machinery,2014,2014: 1-11. [23] PISKIN A,AKTAS H E,TOPAL A,et al. Rotor balancing with turbine blade assembly using ant colony optimization for aero-engine applications[J]. International Journal of Turbo and Jet Engines,2021,38(2): 125-134. doi: 10.1515/tjj-2017-0060 [24] IBRAHEEM A A,GHAZALY N M,ABD EL-JABER G T. Review of rotor balancing techniques[J]. American Journal of Industrial Engineering,2019,6(1): 19-25. [25] 纪福森,翟贤超. 某压气机试验件转子平衡精度分析[J]. 航空发动机,2016,42(1): 88-91. doi: 10.13477/j.cnki.aeroengine.2016.01.018JI Fusen,ZHAI Xianchao. Analysis of balance precision for a compressor test rig[J]. Aeroengine,2016,42(1): 88-91. (in Chinese) doi: 10.13477/j.cnki.aeroengine.2016.01.018 [26] 杜立峰. 某发动机高压转子平衡理论与关键技术研究[D]. 辽宁 大连: 大连理工大学, 2008.DU Lifeng. Study on the balance theory and key technique of some aero engine high-pressure rotor assembly[D]. Dalian Liaoning: Dalian University of Technology, 2008. (in Chinese) [27] 孙贵青,马峰,余治国,等. 某发动机高压转子平衡工艺问题分析与排除[J]. 航空制造技术,2020,63(16): 95-101. doi: 10.16080/j.issn1671-833x.2020.16.095SUN Guiqing,MA Feng,YU Zhiguo,et al. Analysis and elimination of high-pressure rotor balancing process problems[J]. Aeronautical Manufacturing Technology,2020,63(16): 95-101. (in Chinese) doi: 10.16080/j.issn1671-833x.2020.16.095 [28] 王蕴琦,史新宇,王军. 影响平衡质量的工艺要素分析[J]. 航空发动机,2001,27(3): 29-30, 7. doi: 10.3969/j.issn.1672-3147.2001.03.007WANG Yunqi,SHI Xinyu,WANG Jun. Analysis of process factors affecting balance quality[J]. Aeroengine,2001,27(3): 29-30, 7. (in Chinese) doi: 10.3969/j.issn.1672-3147.2001.03.007 [29] 王娟,史新宇,王文宇. 发动机转子平衡测量稳定性技术研究[J]. 航空科学技术,2015,26(7): 17-21. doi: 10.3969/j.issn.1007-5453.2015.07.004WANG Juan,SHI Xinyu,WANG Wenyu. Research on the measurement stability technology of engine rotor balancing[J]. Aeronautical Science & Technology,2015,26(7): 17-21. (in Chinese) doi: 10.3969/j.issn.1007-5453.2015.07.004 [30] 王冰. 航空发动机平衡模拟转子加工工艺分析[J]. 航空发动机,1997,23(3): 44-47.WANG Bing. Aeroengine rotor balance simulation process analysis[J]. Aeroengine,1997,23(3): 44-47. (in Chinese) [31] 中国国家标准化管理委员会. 机械振动 恒态(刚性)转子平衡品质要求: 第1 部分 规范与平衡允差的检验: GB/T 9239.1-2006[S]. 北京: 中国标准化出版社, 2006: 1-23. [32] 中国国家标准化管理委员会. 机械振动 恒态(刚性)转子平衡品质要求: 第2 部分 平衡误差: GB/T 9239.2-2006[S]. 北京: 中国标准化出版社, 2006: 1-11.