留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

考虑支承约束的航空发动机复杂转子振动特性

王龙凯 王艾伦 尹伊君 衡星 金淼 张海彪

王龙凯, 王艾伦, 尹伊君, 等. 考虑支承约束的航空发动机复杂转子振动特性[J]. 航空动力学报, 2023, 38(4):901-912 doi: 10.13224/j.cnki.jasp.20210463
引用本文: 王龙凯, 王艾伦, 尹伊君, 等. 考虑支承约束的航空发动机复杂转子振动特性[J]. 航空动力学报, 2023, 38(4):901-912 doi: 10.13224/j.cnki.jasp.20210463
WANG Longkai, WANG Ailun, YIN Yijun, et al. Vibration characteristics of complex aero-engine rotors considering support constraints[J]. Journal of Aerospace Power, 2023, 38(4):901-912 doi: 10.13224/j.cnki.jasp.20210463
Citation: WANG Longkai, WANG Ailun, YIN Yijun, et al. Vibration characteristics of complex aero-engine rotors considering support constraints[J]. Journal of Aerospace Power, 2023, 38(4):901-912 doi: 10.13224/j.cnki.jasp.20210463

考虑支承约束的航空发动机复杂转子振动特性

doi: 10.13224/j.cnki.jasp.20210463
基金项目: 国家重点基础研究发展计划(2013CB035706); 中央高校基本科研业务费专项资金(2019zzts256)
详细信息
    作者简介:

    王龙凯(1990-),男,博士生,主要从事高端装备动力学及减振研究。E-mail:Longkai.Heat@hotmail.com

  • 中图分类号: V231.9;V235.12;TH113.1

Vibration characteristics of complex aero-engine rotors considering support constraints

  • 摘要:

    针对航空发动机转子复杂的结构特征及支承动力学设计问题,基于有限元 (FE)、分段线性拟合和自由度 (DOF)降维法,采用主子单元对复杂转子进行合理地等效,构建了航空发动机等复杂转子-支承系统的动力学模型,并对模型的有效性进行了试验验证。从转子固有特性、应变能分布、支承传递力和振动响应等方面对支承刚度进行了设计,并开展了弹性支承并联挤压油膜阻尼器 (SFD)非线性减振效率分析。结果表明:动力学模型能较好地反映复杂转子的动力学特性,支承刚度合适取值范围为1.5×104~2.8×104 N/mm,弹性支承并联SFD设计减振和降支承力效果显著,满足临界转速设计准则、应变能约束条件和变形要求,该研究为航空发动机支承刚度和SFD并联设计提供了定量的参考依据,具有重要的工程应用价值。

     

  • 图 1  典型燃发转子结构示意图

    1 一级轴流压气机;2 二级轴流压气机;3 三级轴流压气机;4 离心压气机;5 一级涡轮;6二级涡轮。

    Figure 1.  Schematic diagram of typical gas generator rotor

    图 2  SFD结构简图及力学模型

    Figure 2.  Structural diagram and mechanical model of SFD

    图 3  挤压油膜力模型

    Figure 3.  Squeeze oil-film force model

    图 4  梁单元

    Figure 4.  Beam elements

    图 5  复杂结构建模流程

    Figure 5.  Modeling process of complex structure

    图 6  涡轴发动机燃发转子动力学模型

    Figure 6.  Dynamic model of the gas generator rotor for turboshaft engine

    图 7  试验转子及模态测试

    Figure 7.  Experimental rotor and its mode test

    图 8  试验转子频响函数曲线

    Figure 8.  Frequency-response function curve of the experimental rotor

    图 9  前四阶自由模态振型

    Figure 9.  The first four-order free mode shapes

    图 10  临界转速随1#支承刚度变化曲线

    Figure 10.  Critical speeds varying curves with 1# support stiffness

    图 11  临界转速随2#支承刚度变化曲线

    Figure 11.  Critical speeds varying curves with 2# support stiffness

    图 12  临界转速随两支承刚度同时变化曲线

    Figure 12.  Critical speeds varying curves with two support stiffnesses simultaneously

    图 13  不同支承刚度下振动响应

    Figure 13.  Vibration response for different support stiffnesses

    图 14  不同支承刚度下支承力

    Figure 14.  Support force for different support stiffnesses

    图 15  有SFD时不同支承刚度下响应

    Figure 15.  Response for different support stiffnesses with SFD

    图 16  有SFD时不同支承刚度下支承力

    Figure 16.  Supporting force for different support stiffnesses with SFD

    图 17  燃发转子前3阶振型

    Figure 17.  The first three-order mode shapes for the gas generator rotor

    图 18  前3阶振型对应的势能分布

    Figure 18.  Corresponding potential energy distribution for the first three-order mode shapes

    图 19  设计支承刚度下减振效果

    Figure 19.  Vibration reduction effect under support stiffness designed

    图 20  设计支承刚度下支承力降幅效果

    Figure 20.  Reduction effect of support force with supporting stiffness designed

    表  1  前4阶固有频率

    Table  1.   The first four-order natural frequencies

    阶次固有频率/Hz相对误差/%
    计算值实测值
    16.886.702.74
    219.4019.101.57
    397.3296.131.23
    4139.15134.883.16
    下载: 导出CSV

    表  2  临界转速阈值与支承刚度的关系

    Table  2.   Relationship between the critical speed threshold and the support stiffness

    转速/(r/min)刚度/(N/mm)增长率/%
    1#支承2#支承
    29166455386150235.06
    350009974211830918.62
    500002474491
    下载: 导出CSV

    表  3  临界转速随支承刚度变化率

    Table  3.   Change rate of critical speeds with stiffness

    阶次临界转速/(r/min)增长率/%
    刚度缩小5倍刚度增大5倍
    15119.4018967.56270.50
    210744.5343539.55305.23
    369793.7486253.4723.58
    下载: 导出CSV

    表  4  支承刚度对位移振幅的影响

    Table  4.   Effect of support stiffness on displacement vibration amplitude

    转速/(r/min)位移振幅x/μm增长率/%
    K1K2
    1阶转速点26.2743.2464.59
    2阶转速点3.248.64 166.64
    350000.140.38 179.87
    400000.290.3830.03
    450000.530.52−1.75
    500000.900.77−14.48
    下载: 导出CSV

    表  5  支承刚度对支承力的影响

    Table  5.   Effect of support stiffness on the support force

    转速/(r/min)支承力/N增长率/%
    K1K2
    1阶转速点394.071513.30284.02
    2阶转速点48.62302.42521.99
    350002.0313.26552.40
    400004.4213.40203.01
    450008.0018.31128.88
    5000013.5226.9299.16
    下载: 导出CSV

    表  6  有SFD时支承刚度对振幅的影响

    Table  6.   Effect of support stiffness on displacement vibration amplitude with SFD

    转速/(r/min)位移振幅x/μm增长率/%
    K1K2
    1阶转速点2.003.1959.2
    350000.130.311140.29
    400000.290.3626.71
    450000.520.51−1.84
    500000.860.75−13.28
    下载: 导出CSV

    表  7  有SFD时支承刚度对支承力的影响

    Table  7.   Effect of support stiffness on the support force with SFD

    转速/(r/min)支承力/N增长率/%
    K1K2
    1阶转速点33.07116.67252.85
    350003.5913.11264.98
    400008.7916.0482.42
    4500017.5023.6335.02
    5000031.6836.3614.76
    下载: 导出CSV

    表  8  SFD减振和降支承力效果

    Table  8.   Effect of SFD reducing vibration and support force

    参数 同相不平衡 异相不平衡
    1#支承 2#支承 1#支承 2#支承

    SFD

    SFD
    减振率/
    %

    SFD

    SFD
    减振率/
    %

    SFD

    SFD
    减振率/
    %

    SFD

    SFD
    减振率/
    %
    振动
    峰值/μm
    1阶 31.3 2.3 92.5 56.5 4.7 91.7 7.6 0.8 89.1 13.8 1.5 89.3
    2阶 4.6 3.2 75.6 3.5 95.4 51.6 2.4 95.4
    支承力
    峰值/N
    1阶 624.9 50.5 91.9 1129.7 94.1 91.7 151.9 2.5 98.4 275.5 29.6 89.3
    2阶 92.0 64.6 1511.7 94.5 93.8 1032.5 49.3 95.2
    下载: 导出CSV
  • [1] WANG Longkai,WANG Ailun,JIN Miao,et al. Vibration prediction and failure analysis based on refined modeling of turbocharging rotor system with variable cross sections[J]. European Physical Journal Plus,2021,137(1): 1-24.
    [2] 洪杰,宋制宏,王东,等. 高速转子系统支承结构及力学特性设计方法[J]. 航空动力学报,2019,34(5): 961-970. doi: 10.13224/j.cnki.jasp.2019.05.001

    HONG Jie,SONG Zhihong,WANG Dong,et al. Design method for bearing-support structure and mechanical properties of high-speed rotor system[J]. Journal of Aerospace Power,2019,34(5): 961-970. (in Chinese) doi: 10.13224/j.cnki.jasp.2019.05.001
    [3] 雷冰龙,李超,何康,等. 共用支承-转子系统耦合振动特性分析及试验[J]. 航空动力学报,2020,35(11): 2293-2305.

    LEI Binglong,LI Chao,HE Kang,et al. Coupling vibration characteristics analysis and experiment of shared support-rotors system[J]. Journal of Aerospace Power,2020,35(11): 2293-2305. (in Chinese)
    [4] 陈果. 航空发动机整机振动耦合动力学模型及其验证[J]. 航空动力学报,2012,27(2): 241-254.

    CHEN Guo. A coupling dynamic model for whole aero-engine vibration and its verification[J]. Journal of Aerospace Power,2012,27(2): 241-254. (in Chinese)
    [5] 罗贵火,周海仑,王飞,等. 含滚动轴承的同向和反向旋转双转子系统动力学响应[J]. 航空动力学报,2012,27(8): 1887-1894.

    LUO Guihuo,ZHOU Hailun,WANG Fei,et al. Dynamics response of co-rotating and counter-rotating dual-rotor system supported on ball bearing[J]. Journal of Aerospace Power,2012,27(8): 1887-1894. (in Chinese)
    [6] WANG Longkai,WANG Ailun,YIN Yijun,et al. Effects of unbalance orientation on the dynamic characteristics of a double overhung rotor system for high-speed turbochargers[J]. Nonlinear Dynamics,2022,107(1): 665-681. doi: 10.1007/s11071-021-07068-w
    [7] 张大义, 刘烨辉, 梁智超, 等. 航空发动机双转子系统临界转速求解方法[J]. 推进技术, 2015, 36(2): 292-298.

    ZHANG Dayi, LIU Yehui, LIANG Zhichao, et al. Prediction for critical speed of double spools system in aero engines[J]. Journal of Propulsion Technology, 2015, 36(2): 292-298. (in Chinese)
    [8] 王龙凯,王艾伦,金淼,等. 含内阻的拉杆组合转子双稳态振动特性[J]. 中国机械工程,2021,32(5): 512-522,564. doi: 10.3969/j.issn.1004-132X.2021.05.002

    WANG Longkai,WANG Ailun,JIN Miao,et al. Bistable vibration characteristics of rod fastening rotor with internal damping[J]. China Mechanical Engineering,2021,32(5): 512-522,564. (in Chinese) doi: 10.3969/j.issn.1004-132X.2021.05.002
    [9] WANG Longkai,WANG Ailun,JIN Miao,et al. Nonlinear effects of induced unbalance in the rod fastening rotor-bearing system considering nonlinear contact[J]. Archive of Applied Mechanics,2020,90(5): 917-943. doi: 10.1007/s00419-019-01645-7
    [10] WANG Longkai,WANG Ailun,JIN Miao,et al. Nonlinear dynamic response and stability of a rod fastening rotor with internal damping effect[J]. Archive of Applied Mechanics,2021,91(9): 3851-3867. doi: 10.1007/s00419-021-01981-7
    [11] SINHA S K. Rotor dynamic analysis of asymmetric turbofan rotor due to fan blade-loss event with contact-impact rub loads[J]. Journal of Sound and Vibration,2013,332(9): 2253-2283. doi: 10.1016/j.jsv.2012.11.033
    [12] 廖子豪,宾光富,李超,等. 基于临界转速与振型相似的涡轴发动机模拟转子实验台设计方法[J]. 机械设计,2021,38(6): 45-50.

    LIAO Zihao,BIN Guangfu,LI Chao,et al. Design method of the simulated-rotor test rig for the turboshaft engine based on the critical speed and the similarity of vibration mode[J]. Journal of Machine Design,2021,38(6): 45-50. (in Chinese)
    [13] 邓旺群,吴施志,刘文魁,等. 带柔性静子结构高速转子支承刚度修正方法[J]. 振动与冲击,2020,39(7): 29-35, 66. doi: 10.13465/j.cnki.jvs.2020.07.005

    DENG Wangqun,WU Shizhi,LIU Wenkui,et al. Support stiffness modification method for a high-speed rotor with flexible stator[J]. Journal of Vibration and Shock,2020,39(7): 29-35, 66. (in Chinese) doi: 10.13465/j.cnki.jvs.2020.07.005
    [14] 唐虎标,邓旺群,刘文魁,等. 航空发动机燃气发生器转子不平衡响应分析及试验研究[J]. 长沙航空职业技术学院学报,2021,21(2): 1-5. doi: 10.13829/j.cnki.issn.1671-9654.2021.02.001

    TANG Hubiao,DENG Wangqun,LIU Wenkui,et al. Research on unbalance response and experiment of gas generator rotor of an aero engine[J]. Journal of Changsha Aeronautical Vocational and Technical College,2021,21(2): 1-5. (in Chinese) doi: 10.13829/j.cnki.issn.1671-9654.2021.02.001
    [15] 马艳红,何天元,张大义,等. 支承刚度非线性转子系统的不平衡响应[J]. 航空动力学报,2014,29(7): 1527-1534. doi: 10.13224/j.cnki.jasp.2014.07.003

    MA Yanhong,HE Tianyuan,ZHANG Dayi,et al. Imbalance response of rotor system with nonlinear bearing stiffness[J]. Journal of Aerospace Power,2014,29(7): 1527-1534. (in Chinese) doi: 10.13224/j.cnki.jasp.2014.07.003
    [16] 《航空发动机设计手册》总编委会. 航空发动机设计手册: 第19册 转子动力学及整机振动[M]. 北京: 航空工业出版社, 2000: 210-220.
    [17] 刘展翅,廖明夫,丛佩红,等. 航空发动机转子挤压油膜阻尼器设计方法[J]. 航空动力学报,2015,30(11): 2762-2770. doi: 10.13224/j.cnki.jasp.2015.11.026

    LIU Zhanchi,LIAO Mingfu,CONG Peihong,et al. Design method of squeeze film damper for aero-engine rotors[J]. Journal of Aerospace Power,2015,30(11): 2762-2770. (in Chinese) doi: 10.13224/j.cnki.jasp.2015.11.026
    [18] CHEN W J,RAJAN M,RAJAN S D,et al. The optimal design of squeeze film dampers for flexible rotor systems[J]. Journal of Mechanisms Transmissions and Automation in Design,1988,110(2): 166-174. doi: 10.1115/1.3258922
    [19] NELSON H D. A finite rotating shaft element using Timoshenko beam theory[J]. Journal of Mechanical Design,1980,102(4): 793-803. doi: 10.1115/1.3254824
    [20] CHEN W J, GUNTER E J. Introduction to dynamics of rotor-bearing systems[M]. Victoria, Canada: Trafford Publishing, 2010.
    [21] 王海,王艾伦,马伍,等. 组合转子变态模型动力学相似设计方法研究[J]. 机械设计,2020,37(9): 7-11.

    WANG Hai,WANG Ailun,MA Wu,et al. Research on the dynamic similarity design for the abnormal model of combined rotors[J]. Journal of Machine Design,2020,37(9): 7-11. (in Chinese)
    [22] 宋明波,夏商周,赵海凤,等. 典型燃气发生器转子平衡状态与振动特性分析[J]. 航空发动机,2021,47(2): 79-83.

    SONG Mingbo,XIA Shangzhou,ZHAO Haifeng,et al. Analysis on balancing state and vibration characteristics of a typical gas generator rotor[J]. Aeroengine,2021,47(2): 79-83. (in Chinese)
    [23] 王正. 转动机械的转子动力学设计[M]. 北京: 清华大学出版社, 2015.
  • 加载中
图(20) / 表(8)
计量
  • 文章访问数:  232
  • HTML浏览量:  91
  • PDF量:  82
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-20
  • 网络出版日期:  2022-11-24

目录

    /

    返回文章
    返回