Simulation and experiment on the laminar combustion characteristics of natural gas
-
摘要:
在定容弹中试验测量了压力分别为0.1、0.2、0.3 MPa,当量比范围为0.7~1.4,温度分别为300、350、400 K,O2体积分数分别为15%、18%、21%,CO2体积分数分别为0%、10%、20%,H2O体积分数分别为0%、10%、20%工况条件下天然气(0.9甲烷/0.07乙烷/0.03丙烷,摩尔分数)的火焰发展特性以及层流燃烧速度。同时,利用敏感性分析等方法构建了天然气的简化反应机理(40种组分和189个反应),并对其层流燃烧速度进行了数值计算。结果表明:当当量比由0.7提升至1.4时,天然气的层流燃烧速度先升高后降低,其峰值在当量比1.1附近;层流燃烧速度随着初始温度、O2体积分数的增多或初始压力、CO2及H2O体积分数的减少而逐渐得到提升。构建的天然气简化反应机理可以较好的预测层流燃烧速度随当量比变化的整体趋势;但是,部分工况下预测值略低于试验值。
Abstract:The flame propagation characteristics and laminar combustion speeds of natural gas (0.9 methane/0.07 ethane/0.03 propane, mole fraction) were experimentally tested in the constant volume bomb under the conditions of the pressures of 0.1, 0.2, 0.3 MPa, the equivalence ratios range of 0.7−1.4, the temperatures of 300, 350, 400 K, the contents of O2 of 15%, 18%, 21%, the contents of CO2 and H2O of 0%, 10%, 20%. Meanwhile, the simplified reaction mechanism of natural gas (including 40 species and 189 reactions) was constructed by sensitivity analysis and other methods, and the laminar combustion speeds of natural gas were calculated numerically. The results showed that as the equivalent ratio increased from 0.7 to 1.4, the laminar combustion speeds of natural gas rose and then declined, and the peak appears near the equivalent ratio was 1.1; With the increase of initial temperature and the content of O2 or the decrease of initial pressure, the contents of CO2 and H2O, the laminar combustion speeds gradually increased. The simplified reaction mechanism of natural gas constructed hereto can better predict the overall trends of the laminar combustion speed with the equivalent ratio. However, the predicted values were slightly lower than the experimental values under certain conditions.
-
表 1 试验工况
Table 1. Experiment conditions
工况 当量比 初始压力/MPa 初始温度/K 体积分数/% O2 CO2 H2O 1 0.7~1.4 0.1 350 21 0 0 0.2 0.3 2 0.7~1.4 0.1 300 21
0 0 400 3 0.7~1.4 0.1 400 15 0 0 18 4 0.7~1.4 0.1 400 18.9 10 0 16.8 20 5 0.7~1.4 0.1 400 18.9 0 10 16.8 20 -
[1] 尉曙明,索建秦. 航空衍生工业燃气轮机双燃料贫燃预混低污染燃烧技术[J]. 航空动力学报,2015,30(9): 2049-2057. WEI Shuming,SUO Jianqin. Aero-derivative industrial gas turbine dual fuel lean premixed low emission combustion technology[J]. Journal of Aerospace Power,2015,30(9): 2049-2057. (in Chinese doi: 10.13224/j.cnki.jasp.2015.09.001 WEI Shuming, SUO Jianqin . Aero-derivative industrial gas turbine dual fuel lean premixed low emission combustion technology[J]. Journal of Aerospace Power,2015 ,30 (9 ):2049 -2057 . (in Chinese) doi: 10.13224/j.cnki.jasp.2015.09.001[2] BULAT G,JONES W P,MARQUIS A J. NO and CO formation in an industrial gas-turbine combustion chamber using LES with the Eulerian sub-grid PDF method[J]. Combustion and Flame,2014,161(7): 1804-1825. doi: 10.1016/j.combustflame.2013.12.028 [3] DE ALMEIDA D S,LACAVA P T. Analysis of pollutant emissions in double-stage swirl chamber for gas turbine application[J]. Energy Procedia,2015,66: 117-120. doi: 10.1016/j.egypro.2015.02.067 [4] LYRA S,CANT R S. Analysis of high pressure premixed flames using Equivalent Reactor Networks for predicting NOx emissions[J]. Fuel,2013,107: 261-268. doi: 10.1016/j.fuel.2012.12.066 [5] STARIK A M,KOZLOV V E,LEBEDEV A B,et al. Application of reactor net models for the simulation of gas-turbine combustor emissions[J]. International Journal of Sustainable Aviation,2014,1(1): 43-57. doi: 10.1504/IJSA.2014.062867 [6] KUMAR K,SUNG C J,HUI Xin. Laminar flame speeds and extinction limits of conventional and alternative jet fuels[J]. Fuel,2011,90(3): 1004-1011. doi: 10.1016/j.fuel.2010.11.022 [7] BOSSCHAART K J,DE GOEY L P H. The laminar burning velocity of flames propagating in mixtures of hydrocarbons and air measured with the heat flux method[J]. Combustion and Flame,2004,136(3): 261-269. doi: 10.1016/j.combustflame.2003.10.005 [8] WANG Shuangfeng,ZHANG Hai,JAROSINSKI J,et al. Laminar burning velocities and Markstein lengths of premixed methane/air flames near the lean flammability limit in microgravity[J]. Combustion and Flame,2010,157(4): 667-675. doi: 10.1016/j.combustflame.2010.01.006 [9] 汤成龙,张旭辉,司占博,等. 甲烷/乙烷-空气预混层流燃烧特性试验和数值模拟研究[J]. 内燃机工程,2016,37(1): 83-88. TANG Chenglong,ZHANG Xuhui,SI Zhanbo,et al. Experimental and numerical investigation on the laminar flame characteristics of CH4/C2H6-air mixture[J]. Chinese Internal Combustion Engine Engineering,2016,37(1): 83-88. (in Chinese doi: 10.13949/j.cnki.nrjgc.2016.01.015 TANG Chenglong, ZHANG Xuhui, SI Zhanbo, et al . Experimental and numerical investigation on the laminar flame characteristics of CH4/C2H6-air mixture[J]. Chinese Internal Combustion Engine Engineering,2016 ,37 (1 ):83 -88 . (in Chinese) doi: 10.13949/j.cnki.nrjgc.2016.01.015[10] 曾文,刘靖,马洪安,等. 氮气稀释气对天然气燃烧特性的影响[J]. 热科学与技术,2019,18(3): 219-227. ZENG Wen,LIU Jing,MA Hongan,et al. Effects of nitrogen diluent gas on the combustion characteristics of natural gas[J]. Journal of Thermal Science and Technology,2019,18(3): 219-227. (in Chinese doi: 10.13738/j.issn.1671-8097.018098 ZENG Wen, LIU Jing, MA Hongan, et al . Effects of nitrogen diluent gas on the combustion characteristics of natural gas[J]. Journal of Thermal Science and Technology,2019 ,18 (3 ):219 -227 . (in Chinese) doi: 10.13738/j.issn.1671-8097.018098[11] 宋占锋,张欣,胡尚飞,等. CO2稀释对天然气掺氢预混层流火焰燃烧特性的影响[J]. 燃烧科学与技术,2016,22(5): 408-412. SONG Zhanfeng,ZHANG Xin,HU Shangfei,et al. Effect of CO2 diluent gas on combustion characteristic of laminar flame of premixed hydrogen enriched natural gas and air mixtures[J]. Journal of Combustion Science and Technology,2016,22(5): 408-412. (in Chinese SONG Zhanfeng, ZHANG Xin, HU Shangfei, et al . Effect of CO2 diluent gas on combustion characteristic of laminar flame of premixed hydrogen enriched natural gas and air mixtures[J]. Journal of Combustion Science and Technology,2016 ,22 (5 ):408 -412 . (in Chinese)[12] TANG Chenglong,ZHANG Shuang,SI Zhanbo,et al. High methane natural gas/air explosion characteristics in confined vessel[J]. Journal of Hazardous Materials,2014,278: 520-528. doi: 10.1016/j.jhazmat.2014.06.047 [13] LIAO S Y,JIANG D M,GAO J,et al. Measurements of markstein numbers and laminar burning velocities for natural gas–air mixtures[J]. Energy & Fuels,2004,18(2): 316-326. [14] LIU Yu,LUO Rui,SUN Zhen,et al. Experimental study on the Markstein length and laminar burning velocity of CH4/RP-3 mixture[J]. Journal of Mechanical Science and Technology,2017,31(11): 5527-5537. doi: 10.1007/s12206-017-1047-7 [15] ZENG Wen,LIU Jing,LIU Yu,et al. The effect of hydrogen addition on the combustion characteristics of RP-3 kerosene/air premixed flames[J]. Energies,2017,10(8): 1107.1-1107.12. [16] CHANG Yachao,JIA Ming,NIU Bo,et al. Reduction of large-scale chemical mechanisms using global sensitivity analysis on reaction class/sub-mechanism[J]. Combustion and Flame,2020,212: 355-366. doi: 10.1016/j.combustflame.2019.11.019 [17] CHANG Yachao,JIA Ming,FAN Weiwei,et al. Decoupling methodology: an effective way for the development of reduced and skeletal mechanisms[J]. Acta Physico-Chimica Sinica,2016,32(9): 2209-2215. doi: 10.3866/PKU.WHXB201605262 [18] BURKE U,METCALFE W K,BURKE S M,et al. A detailed chemical kinetic modeling,ignition delay time and jet-stirred reactor study of methanol oxidation[J]. Combustion and Flame,2016,165: 125-136. doi: 10.1016/j.combustflame.2015.11.004 [19] HUANG Haozhong,LÜ Delin,ZHU Jizhen,et al. Development of a new reduced diesel/natural gas mechanism for dual-fuel engine combustion and emission prediction[J]. Fuel,2019,236: 30-42. doi: 10.1016/j.fuel.2018.08.161 -