留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于改进DRSN的航空发动机故障风险预警模型

毛浩英 孙有朝 李龙彪 晏传奇

毛浩英, 孙有朝, 李龙彪, 等. 基于改进DRSN的航空发动机故障风险预警模型[J]. 航空动力学报, 2024, 39(2):20210473 doi: 10.13224/j.cnki.jasp.20210473
引用本文: 毛浩英, 孙有朝, 李龙彪, 等. 基于改进DRSN的航空发动机故障风险预警模型[J]. 航空动力学报, 2024, 39(2):20210473 doi: 10.13224/j.cnki.jasp.20210473
MAO Haoying, SUN Youchao, LI Longbiao, et al. Aeroengine fault risk early warning model based on improved DRSN[J]. Journal of Aerospace Power, 2024, 39(2):20210473 doi: 10.13224/j.cnki.jasp.20210473
Citation: MAO Haoying, SUN Youchao, LI Longbiao, et al. Aeroengine fault risk early warning model based on improved DRSN[J]. Journal of Aerospace Power, 2024, 39(2):20210473 doi: 10.13224/j.cnki.jasp.20210473

基于改进DRSN的航空发动机故障风险预警模型

doi: 10.13224/j.cnki.jasp.20210473
基金项目: 国家自然科学基金委员会-中国民用航空局民航联合研究基金(U2033202); 国家重大专项基础研究项目(2017-Ⅷ-0003-0114,2017-Ⅷ-0002-0113); 南京航空航天大学研究生科研与实践创新计划项目(xcxjh20210701)
详细信息
    作者简介:

    毛浩英(1997-),女,助理工程师,硕士,主要从事航空运营风险与人机工效研究

    通讯作者:

    孙有朝(1964-),男,教授、博士生导师,博士,主要从事航空器可靠性与安全性工程研究。E-mail:sunyc@nuaa.edu.cn

  • 中图分类号: V263.6

Aeroengine fault risk early warning model based on improved DRSN

  • 摘要:

    航空发动机属于多发性故障机械,运用先进的计算训练方法可有效地实现准确的风险预警分析,为发动机的运维指导提供参考。在发动机故障风险预警征兆数据集中提取多变量时间序列样本,将样本矩阵化,转换为灰度图样本。预处理并增强图像数据样本,热编码化序列样本标签。深度残差收缩网络(deep residual shrinkage network,DRSN)中融入深度注意力机制与带有阈值的残差收缩块,获取高判别性特征,实现软阈值化。结合长短时记忆神经网络层与多个隐层,改进DRSN模型,使用主成分分析重构特征与主元提取,累积可解释方差贡献率为93.7%。对潜在20种故障征兆识别、分类并预警,训练精确度为96.1%。提出了改进DRSN航空发动机故障风险预警模型,与其他算法相比有较强的鲁棒性,预警正确率至少提高4.4%。

     

  • 图 1  残差模块结构

    Figure 1.  Residual module structure

    图 2  深度注意力机制网络基本模块

    Figure 2.  Basic module of deep attention mechanism network

    图 3  深度注意力机制网络基本模块

    Figure 3.  Basic module of deep attention mechanism network

    图 4  基于改进DRSN的故障风险预警网络结构

    Figure 4.  Network structure of fault risk early warning based on improved DRSN

    图 5  基于改进DRSN的故障风险预警流程

    Figure 5.  Fault risk early warning process based on improved DRSN

    图 6  噪声预警征兆样本与原样本对比

    Figure 6.  Comparison between noise warning symptom samples and original samples

    图 7  添加噪声的灰度图样本

    Figure 7.  Gray image sample with noise added

    图 8  累积可解释方差贡献率

    Figure 8.  Cumulative interpretable variance contribution rate

    图 9  模型特征数据重构

    Figure 9.  Model feature data reconstruction

    图 10  故障风险预警模型ROC曲线

    Figure 10.  ROC of fault risk early warning model

    图 11  预警征兆混淆矩阵

    Figure 11.  Confusion matrix of early warning signs

    图 12  模型准确率曲线

    Figure 12.  Accuracy curve of the model

    图 13  模型损失曲线

    Figure 13.  Loss curve of the model

    表  1  故障预警征兆样本分类

    Table  1.   Classification of fault warning symptom samples

    故障类型故障现象预警征兆变化量/%
    F1风扇叶片结垢风扇折合流量下降7
    风扇效率下降2
    F2风扇叶片顶端间隙变大(磨损)风扇折合流量下降4
    F3风扇叶片受外物损伤风扇效率下降5
    F4风扇叶片腐蚀风扇效率下降2
    LC1增压级叶片结垢增压级折合流量下降7
    增压级效率下降2
    LC2增压级叶片顶端间隙变大(磨损)增压级折合流量下降4
    LC3增压级叶片受外物损伤增压级效率下降5
    LC4增压级叶片腐蚀增压级效率下降2
    HC1压气机叶片结垢压气机折合流量下降7
    压气机效率下降2
    HC2压气机叶片顶端间隙变大(磨损)压气机折合流量下降4
    HC3压气机叶片受外物损伤压气机效率下降5
    HC4压气机叶片腐蚀压气机效率下降2
    HT1高压涡轮叶片结垢高压涡轮折合流量下降6
    高压涡轮效率下降2
    HT2高压涡轮喷嘴腐蚀高压涡轮折合流量增加6
    HT3高压涡轮叶片磨损高压涡轮折合流量增加6
    高压涡轮效率下降2
    HT4高压涡轮叶片机械损伤高压涡轮效率下降5
    LT1低压涡轮叶片结垢低压涡轮折合流量下降6
    低压涡轮效率下降2
    LT2低压涡轮喷嘴腐蚀低压涡轮折合流量增加6
    LT3低压涡轮叶片磨损低压涡轮折合流量增加6
    低压涡轮效率下降2
    LT4低压涡轮叶片机械损伤低压涡轮效率下降5
    下载: 导出CSV

    表  2  故障风险预警征兆预测

    Table  2.   Prediction of fault risk early warning signs

    故障类型 $ \Delta {N_1}{\text{/\% }} $ $ \Delta {N_2}{\text{/\% }} $ $ \Delta {\pi _{\rm{f}}}{\text{/\% }} $ $ \Delta {\pi _{{\rm{lc}}}}{\text{/\% }} $ $ \Delta {\pi _{{\rm{hc}}}}{\text{/\% }} $ $ \Delta {T_{25}}{\text{/\% }} $ $ \Delta {T_5}{\text{/\% }} $ $ \Delta {W_{\rm{f}}}{\text{/\% }} $ 预警征兆
    F1 3.5886 3.0583 −1.2689 0.2669 4.7768 1.9338 4.0346 7.1595 $ {y_0} $
    LC1 3.5792 −0.0183 0.5637 −8.9666 7.1416 −0.4402 3.4532 1.6750 $ {y_4} $
    HC1 1.1138 0.0021 0.2627 3.6565 −4.2153 0.2970 1.6303 1.1169 $ {y_8} $
    HT1 1.8460 −0.0288 −0.0746 −0.8456 7.5887 0.0265 −0.1475 0.0834 $ {y_{12}} $
    LT1 −4.6522 −0.0621 0.2429 5.6625 −7.2420 0.5248 2.2697 1.2701 $ {y_{16}} $
    下载: 导出CSV

    表  3  不同模型准确率对比

    Table  3.   Comparison of model accuracy rates

    模型训练维度原始数据集/%添加噪声数据集/%平均准确率/%
    改进DRSN16×1699.294.997.1
    DRSN16×1698.680.389.5
    Gauss498.275.086.6
    MOG493.285.492.0
    KNN495.369.492.3
    K-means495.572.292.7
    SVM493.291.392.3
    BP490.663.477.0
    下载: 导出CSV
  • [1] 皮骏,马圣,张奇奇,等. 基于改进果蝇算法优化的GRNN航空发动机排气温度预测模型[J]. 航空动力学报,2019,34(1): 8-17. PI Jun,MA Sheng,ZHANG Qiqi,et al. Aero-engine exhaust gas temperature prediction model based on IFOA-GRNN[J]. Journal of Aerospace Power,2019,34(1): 8-17. (in Chinese

    PI Jun, MA Sheng, ZHANG Qiqi, et al. Aero-engine exhaust gas temperature prediction model based on IFOA-GRNN[J]. Journal of Aerospace Power, 2019, 34(1): 8-17. (in Chinese)
    [2] DING Shuiting,ZHOU Huimin,PAN Bochao,et al. An experimental method to obtain the hard alpha anomaly distribution for titanium alloy aeroengine disks[J]. Chinese Journal of Aeronautics,2021,34(4): 67-82. doi: 10.1016/j.cja.2020.08.024
    [3] 丁水汀,张弓,蔚夺魁,等. 航空发动机适航概率风险评估方法研究综述[J]. 航空动力学报,2011,26(7): 1441-1451. DING Shuiting,ZHANG Gong,YU Duokui,et al. Review of probabilistic risk assessment on aero-engine airworthiness[J]. Journal of Aerospace Power,2011,26(7): 1441-1451. (in Chinese

    DING Shuiting, ZHANG Gong, YU Duokui, et al. Review of probabilistic risk assessment on aero-engine airworthiness[J]. Journal of Aerospace Power, 2011, 26(7): 1441-1451. (in Chinese)
    [4] WU Yuting,YUAN Mei,DONG Shaopeng,et al. Remaining useful life estimation of engineered systems using vanilla LSTM neural networks[J]. Neurocomputing,2018,275: 167-179. doi: 10.1016/j.neucom.2017.05.063
    [5] YANG Shuming,QIU Jing,LIU Guanjun. Hierarchical model-based approach to testability modeling and analysis for PHM of aerospace systems[J]. Journal of Aerospace Engineering,2014,27(1): 131-139. doi: 10.1061/(ASCE)AS.1943-5525.0000203
    [6] 王奕惟,莫李平,王奕首,等. 基于全航段QAR数据和卷积神经网络的航空发动机状态辨识[J]. 航空动力学报,2021,36(7): 1556-1563. WANG Yiwei,MO Liping,WANG Yishou,et al. Aero-engine status identification based on full-segment QAR data and convolutional neural network[J]. Journal of Aerospace Power,2021,36(7): 1556-1563. (in Chinese doi: 10.13224/j.cnki.jasp.20200431

    WANG Yiwei, MO Liping, WANG Yishou, et al. Aero-engine status identification based on full-segment QAR data and convolutional neural network[J]. Journal of Aerospace Power, 2021, 36(7): 1556-1563. (in Chinese) doi: 10.13224/j.cnki.jasp.20200431
    [7] 李娟,周东华,司小胜,等. 微小故障诊断方法综述[J]. 控制理论与应用,2012,29(12): 1517-1529. LI Juan,ZHOU Donghua,SI Xiaosheng,et al. Review of incipient fault diagnosis methods[J]. Control Theory & Applications,2012,29(12): 1517-1529. (in Chinese

    LI Juan, ZHOU Donghua, SI Xiaosheng, et al. Review of incipient fault diagnosis methods[J]. Control Theory & Applications, 2012, 29(12): 1517-1529. (in Chinese)
    [8] 肖乾浩. 基于机器学习理论的机械故障诊断方法综述[J]. 现代制造工程,2021(7): 148-161. XIAO Qianhao. Review on mechanical fault diagnosis methods based on machine learning theories[J]. Modern Manufacturing Engineering,2021(7): 148-161. (in Chinese

    XIAO Qianhao. Review on mechanical fault diagnosis methods based on machine learning theories[J]. Modern Manufacturing Engineering, 2021(7): 148-161. (in Chinese)
    [9] 尹宝才,王文通,王立春. 深度学习研究综述[J]. 北京工业大学学报,2015,41(1): 48-59. YIN Baocai,WANG Wentong,WANG Lichun. Review of deep learning[J]. Journal of Beijing University of Technology,2015,41(1): 48-59. (in Chinese

    YIN Baocai, WANG Wentong, WANG Lichun. Review of deep learning[J]. Journal of Beijing University of Technology, 2015, 41(1): 48-59. (in Chinese)
    [10] 马波,赵祎,齐良才. 变分自编码器在机械故障预警中的应用[J]. 计算机工程与应用,2019,55(12): 245-249,264. MA Bo,ZHAO Yi,QI Liangcai. Application of variational auto-encoder in mechanical fault early warning[J]. Computer Engineering and Applications,2019,55(12): 245-249,264. (in Chinese

    MA Bo, ZHAO Yi, QI Liangcai. Application of variational auto-encoder in mechanical fault early warning[J]. Computer Engineering and Applications, 2019, 55(12): 245-249, 264. (in Chinese)
    [11] LI Yingshun,DONG Wan,YI Xiaojian,et al. Engine fault prediction and health evaluation based on oil sensor[C]//2020 Prognostics and Health Management Conference. Piscataway,US: IEEE,2020: 223-228.
    [12] ZHANG Zhijin,LI He,CHEN Lei. Deep residual shrinkage networks with self-adaptive slope thresholding for fault diagnosis[C]// Proceedings of 2021 7th International Conference on Condition Monitoring of Machinery in Non-Stationary Operations. Guangzhou: IEEE,2021: 236-239.
    [13] ZHAO Minghang,ZHONG Shisheng,FU Xuyun,et al. Deep residual shrinkage networks for fault diagnosis[J]. IEEE Transactions on Industrial Informatics,2020,16(7): 4681-4690. doi: 10.1109/TII.2019.2943898
    [14] LIU Jiuzhou,ZHOU Qianwen,ZHANG Biyin. Deep residual shrinkage network for few-shot learning[C]// Proceedings of 2021 3rd International Conference on Intelligent Control,Measurement and Signal Processing and Intelligent Oil Field. Xi'an: IEEE,2021: 120-124.
    [15] CHE Changchang,WANG Huawei,NI Xiaoping,et al. Fault diagnosis of rolling bearing based on deep residual shrinkage network[J]. Journal of Beijing University of Aeronautics and Astronautics,2021,47(7): 1399-1406.
    [16] VIANNA M R,IZQUIERDO L A,BARROS D M,et al. Short- and long-term memory: differential involvement of neurotransmitter systems and signal transduction cascades[J]. Anais Da Academia Brasileira De Ciencias,2000,72(3): 353-364. doi: 10.1590/S0001-37652000000300009
    [17] ZOU Hui,XUE Lingzhou. A selective overview of sparse principal component analysis[J]. Proceedings of the IEEE,2018,106(8): 1311-1320. doi: 10.1109/JPROC.2018.2846588
    [18] HE Kaiming,ZHANG Xiangyu,REN Shaoqing,et al. Deep residual learning for image recognition[C]// Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas,US: IEEE,2016: 770-778.
    [19] 刘元芳. 航空发动机气路故障的智能诊断方法研究[D]. 厦门: 厦门大学,2018. LIU Yuanfang. Research on intelligent diagnosis method for aircraft engine gas path fault[D]. Xiamen: Xiamen University,2018. (in Chinese

    LIU Yuanfang. Research on intelligent diagnosis method for aircraft engine gas path fault[D]. Xiamen: Xiamen University, 2018. (in Chinese)
    [20] 郝英. 基于智能技术的民航发动机故障诊断和寿命预测研究[D]. 南京: 南京航空航天大学,2006. HAO Ying. Research on civil aviation engine fault diagnosis and life predication based on intelligent technologies[D]. Nanjing: Nanjing University of Aeronautics and Astronautics,2006. (in Chinese

    HAO Ying. Research on civil aviation engine fault diagnosis and life predication based on intelligent technologies[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2006. (in Chinese)
    [21] 瞿红春. 民用涡扇发动机健康智能监控技术的研究[D]. 天津: 天津大学,2010. QU Hongchun. Study on civil turbofan engine health intelligent monitoring technologies[D]. Tianjin: Tianjin University,2010. (in Chinese

    QU Hongchun. Study on civil turbofan engine health intelligent monitoring technologies[D]. Tianjin: Tianjin University, 2010. (in Chinese)
  • 加载中
图(13) / 表(3)
计量
  • 文章访问数:  212
  • HTML浏览量:  90
  • PDF量:  47
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-29
  • 网络出版日期:  2023-11-01

目录

    /

    返回文章
    返回