Radial stiffness analysis of cylindrical roller bearing
-
摘要:
为了揭示滚子凸度和轴承转速对圆柱滚子轴承径向刚度的影响规律,采用隐函数微分方法,建立了考虑滚子凸度和轴承转速的圆柱滚子轴承径向刚度解析模型。分析了滚子凸度、轴承转速、径向游隙、径向载荷等因素对轴承径向刚度的影响规律,并与其他文献方法进行比较,验证了所建立解析模型的正确性。研究结果表明:圆柱滚子轴承径向刚度随滚子凸度、径向游隙的增加而减小,随着轴承转速、径向载荷的增加而增加;随着径向载荷的增大,滚子凸度、轴承转速、径向游隙等因素对轴承径向刚度的影响减弱。
Abstract:To reveal the effect of roller convexity and bearing speed on the radial stiffness of cylindrical roller bearing, an analytical model of cylindrical roller bearing radial stiffness considering roller convexity and bearing speed was established. The influences of factors such as roller convexity, bearing speed, radial clearance and radial load on the radial stiffness of the bearing were analyzed. The established model was compared with other literature methods to verify the correctness. The research results showed that the radial stiffness of cylindrical roller bearings decreased with the increase of roller convexity and radial clearance, and increased with the increase of bearing speed and radial load. With the increase of radial load, the influences of roller convexity, bearing speed and radial clearance on the radial stiffness of the bearing were weakened.
-
表 1 圆柱滚子轴承A结构参数
Table 1. Structural parameter of cylindrical roller bearing A
参数 数值 滚子个数 13 节圆直径/mm 39 滚子长度/mm 9 滚子有效长度/mm 8.6 滚子直径/mm 7.5 轴承宽度/mm 15 径向间隙/mm 0.04 表 2 圆柱滚子轴承B结构参数
Table 2. Structural parameter of cylindrical roller bearing B
参数 数值 滚子个数 14 节圆直径/mm 39 滚子直径/mm 34.8 轴承宽度/mm 58 径向间隙/mm 0.05 滚子最大凸度/mm 0.0045 表 3 圆柱滚子轴承C结构参数
Table 3. Structural parameter of cylindrical roller bearing C
参数 数值 滚子数目 22 轴承外径/mm 122 轴承内径/mm 82 滚子直径/mm 10 滚子长度/mm 10 滚子有效长度/mm 9 表 4 圆柱滚子轴承D结构参数
Table 4. Structural parameter of cylindrical roller bearing D
参数 数值 轴承外径/mm 75 轴承内径/mm 55 滚子数目 14 滚子直径/mm 10 滚子长度/mm 10 滚子有效长度/mm 9.6 -
[1] JONES A B. A general theory for elastically constrained ball and radial roller bearings under arbitrary load and speed conditions[J]. Journal of Basic Engineering,1960,82(2): 309-320. doi: 10.1115/1.3662587 [2] HARRIS T A. Rolling bearing analysis[M]. 4th ed. New York: John Wiley and Sons,2001. [3] 邱明,牛振华,杜辉,等. 薄壁交叉圆柱滚子轴承最佳径向工作游隙[J]. 航空动力学报,2018,33(7): 1725-1735. QIU Ming,NIU Zhenhua,DU Hui,et al. Optimum radial working clearance of thin-walled crossed cylindrical roller bearings[J]. Journal of Aerospace Power,2018,33(7): 1725-1735. (in Chinese doi: 10.13224/j.cnki.jasp.2018.07.021 QIU Ming, NIU Zhenhua, DU Hui, et al . Optimum radial working clearance of thin-walled crossed cylindrical roller bearings[J]. Journal of Aerospace Power,2018 ,33 (7 ):1725 -1735 . (in Chinese) doi: 10.13224/j.cnki.jasp.2018.07.021[4] CHEN Guanci,WANG Hailiang. Contact stress and radial stiffness of a cylindrical roller bearing with corrected roller generator[J]. Transactions of the Canadian Society for Mechanical Engineering,2016,40(5): 725-738. doi: 10.1139/tcsme-2016-0059 [5] ZHANG Wenhu,DENG Sier,CHEN Guoding,et al. Study on the impact of roller convexity excursion of high-speed cylindrical roller bearing on roller’s dynamic characteristics[J]. Mechanism and Machine Theory,2016,103: 21-39. doi: 10.1016/j.mechmachtheory.2016.04.010 [6] CUI Yongcun,DENG Sier,ZHANG Wenhu,et al. The impact of roller dynamic unbalance of high-speed cylindrical roller bearing on the cage nonlinear dynamic characteristics[J]. Mechanism and Machine Theory,2017,118: 65-83. doi: 10.1016/j.mechmachtheory.2017.08.001 [7] LIU Jing,SHI Zhifeng,SHAO Yimin. An analytical model to predict vibrations of a cylindrical roller bearing with a localized surface defect[J]. Nonlinear Dynamics,2017,89(3): 2085-2102. doi: 10.1007/s11071-017-3571-5 [8] LIU Jing,SHAO Yimin. An improved analytical model for a lubricated roller bearing including a localized defect with different edge shapes[J]. Journal of Vibration and Control,2018,24(17): 3894-3907. doi: 10.1177/1077546317716315 [9] 刘光辉,洪军,孙岩辉,等. 考虑滚子位置变化的圆柱滚子轴承非线性刚度特性分析[J]. 中国机械工程,2020,31(5): 505-512. LIU Guanghui,HONG Jun,SUN Yanhui,et al. Nonlinear stiffness characteristic analysis of cylindrical roller bearings considering variation of roller positions[J]. China Mechanical Engineering,2020,31(5): 505-512. (in Chinese LIU Guanghui, HONG Jun, SUN Yanhui, et al . Nonlinear stiffness characteristic analysis of cylindrical roller bearings considering variation of roller positions[J]. China Mechanical Engineering,2020 ,31 (5 ):505 -512 . (in Chinese)[10] CHIPPA S P,SARANGI M. On the dynamics of lubricated cylindrical roller bearings: Part Ⅰ evaluation of stiffness and damping characteristics[J]. Tribology Transactions,2013,56(6): 1087-1096. doi: 10.1080/10402004.2013.828823 [11] TONG V C,KWON S W,HONG S W. Fatigue life of cylindrical roller bearings[J]. Proceedings of the Institution of Mechanical Engineers: Part J Journal of Engineering Tribology,2017,231(5): 623-636. [12] LIU Jing,SHAO Yimin. An analytical dynamic model of a hollow cylindrical roller bearing[J]. Journal of Tribology,2018,140(6): 061403. doi: 10.1115/1.4040382 [13] ZHANG Yu,SUN Guohua,LIM T,et al. A fast and reliable numerical method for analyzing loaded rolling element bearing displacements and stiffness[J]. Journal of Vibroengineering,2015,17: 620-642. [14] WEI Yan,LIU Yan,ZHANG Xiu. Theoretical research on the radial stiffness of pre-loaded hollow cylindrical roller bearings[J]. Key Engineering Materials,2011,464: 362-365. doi: 10.4028/www.scientific.net/KEM.464.362 [15] GUO Yi,PARKER R G. Stiffness matrix calculation of rolling element bearings using a finite element/contact mechanics model[J]. Mechanism and Machine Theory,2012,51: 32-45. doi: 10.1016/j.mechmachtheory.2011.12.006 [16] HAO Xu,GU Xinxin,ZHOU Xianwen,et al. Distribution characteristics of stress and displacement of rings of cylindrical roller bearing[J]. Proceedings of the Institution of Mechanical Engineers,Part C: Journal of Mechanical Engineering Science,2019,233(12): 4348-4358. [17] 牛荣军,张建虎,倪艳光,等. 计及芯轴变形的轴连轴承载荷分布和刚度计算[J]. 航空动力学报,2019,34(3): 717-727. NIU Rongjun,ZHANG Jianhu,NI Yanguang,et al. Load distribution and stiffness calculation of integral shaft bearings considering mandrel deformation[J]. Journal of Aerospace Power,2019,34(3): 717-727. (in Chinese doi: 10.13224/j.cnki.jasp.2019.03.025 NIU Rongjun, ZHANG Jianhu, NI Yanguang, et al . Load distribution and stiffness calculation of integral shaft bearings considering mandrel deformation[J]. Journal of Aerospace Power,2019 ,34 (3 ):717 -727 . (in Chinese) doi: 10.13224/j.cnki.jasp.2019.03.025[18] LIM T C,SINGH R. Vibration transmission through rolling element bearings: Part Ⅰ bearing stiffness formulation[J]. Journal of Sound and Vibration,1990,139(2): 179-199. doi: 10.1016/0022-460X(90)90882-Z