留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

具有导流孔结构的自相似微通道热沉

周华 唐巍 曾赟 赵洋 陈泽 宁翰宇 董兴旺 邹昌成

周华, 唐巍, 曾赟, 等. 具有导流孔结构的自相似微通道热沉[J]. 航空动力学报, 2024, 39(3):20210475 doi: 10.13224/j.cnki.jasp.20210475
引用本文: 周华, 唐巍, 曾赟, 等. 具有导流孔结构的自相似微通道热沉[J]. 航空动力学报, 2024, 39(3):20210475 doi: 10.13224/j.cnki.jasp.20210475
ZHOU Hua, TANG Wei, ZENG Yun, et al. A self-similarity heat sink with the structure of deflector hole[J]. Journal of Aerospace Power, 2024, 39(3):20210475 doi: 10.13224/j.cnki.jasp.20210475
Citation: ZHOU Hua, TANG Wei, ZENG Yun, et al. A self-similarity heat sink with the structure of deflector hole[J]. Journal of Aerospace Power, 2024, 39(3):20210475 doi: 10.13224/j.cnki.jasp.20210475

具有导流孔结构的自相似微通道热沉

doi: 10.13224/j.cnki.jasp.20210475
详细信息
    作者简介:

    周华(1996-),男,硕士生,主要从事高性能换热器研究

    通讯作者:

    唐巍(1989-),男,讲师,博士,主要从事微通道换热研究。E-mail:weitangscu@163.com

  • 中图分类号: V231.1

A self-similarity heat sink with the structure of deflector hole

  • 摘要:

    自相似微通道热沉(SSHS)具有结构紧凑、散热性能强、可扩展性好等特点,可应用于高发热电子芯片的散热。为克服自相似热沉内部的流动分配不均,进一步提高散热性能,提出一种具有导流孔结构的自相似微通道热沉。使用数值计算方法验证该结构设计的有效性。结果表明:具有导流孔结构的自相似微通道热沉内流体垂直冲击溢流道起到强化换热作用。计算单元入口流量在0.58~1.44 kg/h时,相比原型SSHS,改进型SSHS流量分配均匀性大幅改善,加热面最高温度降低10 K,加热底面温度分布均匀性提高57%,同时进出口压降降低约10.4%。在改进型基础上对射流孔尺寸进行了进一步结构优化,与改进型相比以更大的进出口压降(提高约16.5%)为代价,取得了更好的流动分配均匀性及散热性能。

     

  • 图 1  网格无关性验证

    Figure 1.  Mesh independence validation

    图 2  原型与改进型SSHS整体结构及流动示意图

    Figure 2.  Schematic diagram of the overall structure and flow of prototype and improved SSHS

    图 3  原型及改进型SSHS单元模型结构尺寸及网格(单位:mm)

    Figure 3.  Prototype and improved SSHS element model structure dimensions and mesh (unit: mm)

    图 4  计算方法验证

    Figure 4.  Calculation method validation

    图 5  原型与改进型SSHS换热及流动特性对比 (Qinlet=0.86 kg/h)

    Figure 5.  Comparison of heat transfer and flow characteristics of prototype and improved SSHS (Qinlet=0.86 kg/h)

    图 6  不同流量下原型与改进型SSHS流动分配均匀性,换热性能及压降对比 (Qin=0.58~1.44 kg/h)

    Figure 6.  Comparison of flow distribution uniformity, heat transfer performance and pressure drop between prototype and improved SSHS under different flow rates (Qin=0.58−1.44 kg/h)

    图 7  改进型与进一步改进型SSHS几何尺寸图(单位:mm)

    Figure 7.  Improved and further improved SSHS geometry (unit: mm)

    图 8  改进型与进一步改进型SSHS速度云图及加热底面温度分布对比(Qinlet=0.86 kg/h)

    Figure 8.  Improved and further improved SSHS velocity cloud map and temperature distribution of heating bottom surface (Qinlet =0.86 kg/h)

    图 9  不同流量下改进型与进一步改进型SSHS流动分配,换热性能及压降对比 (Qin=0.58~1.44 kg/h)

    Figure 9.  Comparison of flow distribution, heat transfer performance and pressure drop between improved and further improved SSHS under different flow rates (Qin=0.58—1.44 kg/h)

  • [1] MUDAWAR I. Assessment of high-heat-flux thermal management schemes[J]. IEEE Transactions on Components and Packaging Technologies,2001,24(2): 122-141. doi: 10.1109/6144.926375
    [2] KANDLIKAR S G,BAPAT A V. Evaluation of jet impingement,spray and microchannel chip cooling options for high heat flux removal[J]. Heat Transfer Engineering,2007,28(11): 911-923. doi: 10.1080/01457630701421703
    [3] WANG Yuan,WANG Zhenguo. An overview of liquid-vapor phase change,flow and heat transfer in mini- and micro-channels[J]. International Journal of Thermal Sciences,2014,86: 227-245. doi: 10.1016/j.ijthermalsci.2014.07.005
    [4] 唐巍,孙立成,刘洪涛,等. 分流式微通道热沉强化传热性能数值分析[J]. 电子科技大学学报,2018,47(6): 864-868. TANG Wei,SUN Licheng,LIU Hongtao,et al. A numerical analysis of the enhanced performance in heat transfer of a manifold micro-channel heat sink[J]. Journal of University of Electronic Science and Technology of China,2018,47(6): 864-868. (in Chinese

    TANG Wei, SUN Licheng, LIU Hongtao, et al. A numerical analysis of the enhanced performance in heat transfer of a manifold micro-channel heat sink[J]. Journal of University of Electronic Science and Technology of China, 2018, 47(6): 864-868. (in Chinese)
    [5] KIM Y H,CHUN W C,KIM J T,et al. Forced air cooling by using manifold microchannel heat sinks[J]. KSME International Journal,1998,12(4): 709-718. doi: 10.1007/BF02945732
    [6] RYU J H,CHOI D H,KIM S J. Three-dimensional numerical optimization of a manifold microchannel heat sink[J]. International Journal of Heat and Mass Transfer,2003,46(9): 1553-1562. doi: 10.1016/S0017-9310(02)00443-X
    [7] TANG Wei,SUN Licheng,LIU Hongtao,et al. Improvement of flow distribution and heat transfer performance of a self-similarity heat sink with a modification to its structure[J]. Applied Thermal Engineering,2017,121: 163-171. doi: 10.1016/j.applthermaleng.2017.04.051
    [8] BRIGHENTI F,KAMARUZAMAN N,BRANDNER J J. Investigation of self-similar heat sinks for liquid cooled electronics[J]. Applied Thermal Engineering,2013,59(1/2): 725-732.
    [9] KAMARUZAMAN N B,BRIGHENTI F,BRANDNER J J,et al. Prediction of micro surface cooler performance for different rectangular type microchannels dimensions[J]. International Journal of Heat and Fluid Flow,2013,44: 644-651. doi: 10.1016/j.ijheatfluidflow.2013.09.005
    [10] ESCHER W,MICHEL B,POULIKAKOS D. A novel high performance,ultra thin heat sink for electronics[J]. International Journal of Heat and Fluid Flow,2010,31(4): 586-598. doi: 10.1016/j.ijheatfluidflow.2010.03.001
    [11] BOTELER L,JANKOWSKI N,MCCLUSKEY P,et al. Numerical investigation and sensitivity analysis of manifold microchannel coolers[J]. International Journal of Heat and Mass Transfer,2012,55(25/26): 7698-7708.
    [12] JANKOWSKI N R,EVERHART L,MORGAN B,et al. Comparing microchannel technologies to minimize the thermal stack and improve thermal performance in hybrid electric vehicles[C]//2007 IEEE Vehicle Power and Propulsion Conference. Arlington,US: IEEE,2008: 124-130.
    [13] SHARMA C S,SCHLOTTIG G,BRUNSCHWILER T,et al. A novel method of energy efficient hotspot-targeted embedded liquid cooling for electronics: an experimental study[J]. International Journal of Heat and Mass Transfer,2015,88: 684-694. doi: 10.1016/j.ijheatmasstransfer.2015.04.047
    [14] ARIE M A,SHOOSHTARI A H,DESSIATOUN S V,et al. Numerical modeling and thermal optimization of a single-phase flow manifold-microchannel plate heat exchanger[J]. International Journal of Heat and Mass Transfer,2015,81: 478-489. doi: 10.1016/j.ijheatmasstransfer.2014.10.022
    [15] KONG D,KIM Y,KANG M,et al. A holistic approach to thermal-hydraulic design of 3D manifold microchannel heat sinks for energy-efficient cooling[J]. Case Studies in Thermal Engineering,2021,28: 101583. doi: 10.1016/j.csite.2021.101583
    [16] 黄名海,臧树升,葛冰,等. 热风洞中涡轮叶片温度场红外热像测量方法[J]. 航空动力学报,2014,29(11): 2679-2683. HUANG Minghai,ZANG Shusheng,GE Bing,et al. Method of infrared thermography measurement for temperature field of turbine vane in hot wind tunnel[J]. Journal of Aerospace Power,2014,29(11): 2679-2683. (in Chinese

    HUANG Minghai, ZANG Shusheng, GE Bing, et al. Method of infrared thermography measurement for temperature field of turbine vane in hot wind tunnel[J]. Journal of Aerospace Power, 2014, 29(11): 2679-2683. (in Chinese)
    [17] ZHOU Jianhong,CHEN Xuemei,ZHAO Qi,et al. Flow thermohydraulic characterization of hierarchical-manifold microchannel heat sink with uniform flow distribution[J]. Applied Thermal Engineering,2021,198: 117510. doi: 10.1016/j.applthermaleng.2021.117510
    [18] PAN Yuhui,ZHAO Rui,NIAN Yongle,et al. Study on the flow and heat transfer characteristics of pin-fin manifold microchannel heat sink[J]. International Journal of Heat and Mass Transfer,2022,183: 122052. doi: 10.1016/j.ijheatmasstransfer.2021.122052
    [19] GILMORE N,TIMCHENKO V,MENICTAS C. Manifold microchannel heat sink topology optimisation[J]. International Journal of Heat and Mass Transfer,2021,170: 121025. doi: 10.1016/j.ijheatmasstransfer.2021.121025
    [20] 石宇,夏新林,陈学,等. 基于高温瞬态热响应的石英窗口导热系数反演[J]. 航空动力学报,2022,37(4): 755-764. SHI Yu,XIA Xinlin,CHEN Xue,et al. Inversion of thermal conductivity of quartz window based on transient thermal response at high temperature[J]. Journal of Aerospace Power,2022,37(4): 755-764. (in Chinese

    SHI Yu, XIA Xinlin, CHEN Xue, et al. Inversion of thermal conductivity of quartz window based on transient thermal response at high temperature[J]. Journal of Aerospace Power, 2022, 37(4): 755-764. (in Chinese)
  • 加载中
图(9)
计量
  • 文章访问数:  85
  • HTML浏览量:  35
  • PDF量:  39
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-30
  • 网络出版日期:  2023-11-03

目录

    /

    返回文章
    返回