留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

金属增材制件射线检测缺陷检出概率分析

代威珏 敖波 刘海强 夏志风

代威珏, 敖波, 刘海强, 等. 金属增材制件射线检测缺陷检出概率分析[J]. 航空动力学报, 2024, 39(4):20210482 doi: 10.13224/j.cnki.jasp.20210482
引用本文: 代威珏, 敖波, 刘海强, 等. 金属增材制件射线检测缺陷检出概率分析[J]. 航空动力学报, 2024, 39(4):20210482 doi: 10.13224/j.cnki.jasp.20210482
DAI Weijue, AO Bo, LIU Haiqiang, et al. POD analysis of defect in radiographic testing of metal additive parts[J]. Journal of Aerospace Power, 2024, 39(4):20210482 doi: 10.13224/j.cnki.jasp.20210482
Citation: DAI Weijue, AO Bo, LIU Haiqiang, et al. POD analysis of defect in radiographic testing of metal additive parts[J]. Journal of Aerospace Power, 2024, 39(4):20210482 doi: 10.13224/j.cnki.jasp.20210482

金属增材制件射线检测缺陷检出概率分析

doi: 10.13224/j.cnki.jasp.20210482
基金项目: 基础科研项目(JCKY2019401D001);无损检测技术教育部重点实验室开放基金(EW202101217)
详细信息
    作者简介:

    代威珏(1997-),男,硕士生,主要从事射线数字成像检测研究。E-mail:daiweijue@163.com

    通讯作者:

    敖波(1979-),男,教授、硕士生导师,博士,主要从事材料射线成像检测研究。E-mail:aobo0328@nchu.edu.cn

  • 中图分类号: V263.1;TG115.28

POD analysis of defect in radiographic testing of metal additive parts

  • 摘要:

    针对增材制造射线检测缺乏缺陷检出概率数据易导致裂纹、孔隙缺陷漏检问题,以GH3625高温合金增材制件的线型缺陷和孔型缺陷为研究对象,使用CIVA2020仿真平台模拟X射线检测并得到缺陷检出概率(POD)曲线,研究两种缺陷不同尺寸变化对缺陷检出概率的影响,确定不同影响因素下缺陷检出尺寸及检出概率,并利用Sgompertz函数拟合得到线型缺陷受深度影响的POD曲线方程以及孔型缺陷受半径影响的POD曲线方程,建立了增材制造线型缺陷和孔型缺陷的缺陷检出概率模型。结果表明:在95%的置信水平下以90%概率可检出的线型缺陷长度尺寸为0.211 mm、宽度尺寸为0.213 mm、深度尺寸为0.178 mm,孔型缺陷可检出的直径尺寸为0.188 mm,高度尺寸为0.190 mm。通过实际试样微焦点射线成像检测以及胶片射线照相检测对仿真结果进行对比验证。表明建立的缺陷检出概率模型较为准确,可为增材制造中裂纹与孔隙缺陷检测可靠性分析提供依据。

     

  • 图 1  典型的POD曲线

    Figure 1.  Typical POD curve

    图 2  透照布置图

    Figure 2.  Exposure layout

    图 3  底片影像

    Figure 3.  Film image

    图 4  线型缺陷不同变化因素下的POD曲线

    Figure 4.  POD curve of linear defect under different factors

    图 5  孔型缺陷不同变化因素下的POD曲线

    Figure 5.  POD curve of pore defect under different factors

    图 6  典型缺陷试样

    Figure 6.  Typical defect specimen

    图 7  试验件成像透照布置

    Figure 7.  Imaging arrangement of specimen

    图 8  典型缺陷数字射线检测图像

    Figure 8.  Digital radiography testing image of typical defect

    图 9  线型缺陷底片影像

    Figure 9.  Film image of linear defect

    表  1  不同检出概率指标下线型缺陷可检出尺寸

    Table  1.   Detectable size of linear defects under different PO mm

    变化因素 a50
    a90
    a90/95
    a95/95
    长度 0.172 0.195 0.211 0.220
    宽度 0.176 0.202 0.213 0.220
    深度 0.172 0.176 0.178 0.179
    下载: 导出CSV

    表  2  不同检出概率指标下孔型缺陷可检出尺寸

    Table  2.   Detectable size of pore defects under different POD mm

    变化因素 a50
    a90
    a90/95
    a95/95
    半径 0.079 0.089 0.094 0.098
    高度 0.128 0.165 0.190 0.206
    下载: 导出CSV
  • [1] 林鑫,黄卫东. 高性能金属构件的激光增材制造[J]. 中国科学: 信息科学,2015,45(9): 1111-1126. LIN Xin,HUANG Weidong. Laser additive manufacturing of high-performance metal components[J]. Scientia Sinica (Informationis),2015,45(9): 1111-1126. (in Chinese doi: 10.1360/N112014-00245

    LIN Xin, HUANG Weidong. Laser additive manufacturing of high-performance metal components[J]. Scientia Sinica (Informationis), 2015, 45(9): 1111-1126. (in Chinese) doi: 10.1360/N112014-00245
    [2] 张立浩,钱波,张朝瑞,等. 金属增材制造技术发展趋势综述[J]. 材料科学与工艺,2022(1): 42-52. ZHANG Lihao,QIAN Bo,ZHANG Chaorui,et al. Summary of the development trend of metal additive manufacturing technology[J]. Materials Science and Technology,2022(1): 42-52. (in Chinese

    ZHANG Lihao, QIAN Bo, ZHANG Chaorui, et al. Summary of the development trend of metal additive manufacturing technology[J]. Materials Science and Technology, 2022(1): 42-52. (in Chinese)
    [3] WALLER J,PARKER B,HODGES K,et al. Qualification of products fabricated via additive manufacturing using nondestructive evaluation[R]. Frascati,Italy: NASA,2015.
    [4] 胡婷萍,高丽敏,杨海楠. 航空航天用增材制造金属结构件的无损检测研究进展[J]. 航空制造技术,2019,62(8): 70-75,87. HU Tingping,GAO Limin,YANG Hainan. Application of nondestructive testing techniques on additive manufacturing in aerospace fields[J]. Aeronautical Manufacturing Technology,2019,62(8): 70-75,87. (in Chinese

    HU Tingping, GAO Limin, YANG Hainan. Application of nondestructive testing techniques on additive manufacturing in aerospace fields[J]. Aeronautical Manufacturing Technology, 2019, 62(8): 70-75, 87. (in Chinese)
    [5] ALESHIN N P,GRIGOR’EV M V,SHCHIPAKOV N A,et al. Using nondestructive testing methods for in-production quality control of additive manufactured parts[J]. Russian Journal of Nondestructive Testing,2016,52(9): 532-537. doi: 10.1134/S1061830916090023
    [6] 杨平华,高祥熙,梁菁,等. 金属增材制造技术发展动向及无损检测研究进展[J]. 材料工程,2017,45(9): 13-21. YANG Pinghua,GAO Xiangxi,LIANG Jing,et al. Development tread and NDT progress of metal additive manufacture technique[J]. Journal of Materials Engineering,2017,45(9): 13-21. (in Chinese

    YANG Pinghua, GAO Xiangxi, LIANG Jing, et al. Development tread and NDT progress of metal additive manufacture technique[J]. Journal of Materials Engineering, 2017, 45(9): 13-21. (in Chinese)
    [7] 凌松. 增材制造技术及其制品的无损检测进展[J]. 无损检测,2016,38(6): 60-64. LING Song. Additive manufacture technique and related NDT for its products[J]. Nondestructive Testing Technologying,2016,38(6): 60-64. (in Chinese

    LING Song. Additive manufacture technique and related NDT for its products[J]. Nondestructive Testing Technologying, 2016, 38(6): 60-64. (in Chinese)
    [8] 史亦韦,梁菁,何方成. 航空材料与制件无损检测技术新进展[M]. 北京: 国防工业出版社,2012.
    [9] COTTER D J,KOENIGSBERG W D. Improving probability of flaw detection in ceramics by X-ray imaging energy level optimization[J]. Journal of the American Ceramic Society,1990,73(6): 1763-1765. doi: 10.1111/j.1151-2916.1990.tb09827.x
    [10] 聂勇,左畅,蔡军. 异种金属焊缝射线检测可靠性研究[C]//中国核科学技术进展报告——中国核学会2009年学术年会论文集(第一卷·第2册). 北京: 中国核学会,2009: 425-434.
    [11] 朱凯. 航空精密铸件射线检测仿真及验证试验[D]. 南昌: 南昌航空大学,2013. ZHU Kai. Simulation and verification of radiography testing of aerial precision castings[D]. Nanchang: Nanchang Hangkong University,2013. (in Chinese

    ZHU Kai. Simulation and verification of radiography testing of aerial precision castings[D]. Nanchang: Nanchang Hangkong University, 2013. (in Chinese)
    [12] 王倩妮,马海全,苏宇航. 射线检测计算机仿真技术及其应用[J]. 无损检测,2015,37(11): 13-17. WANG Qianni,MA Haiquan,SU Yuhang. Applications of computer simulation of radiographic testing[J]. Nondestructive Testing Technologying,2015,37(11): 13-17. (in Chinese

    WANG Qianni, MA Haiquan, SU Yuhang. Applications of computer simulation of radiographic testing[J]. Nondestructive Testing Technologying, 2015, 37(11): 13-17. (in Chinese)
    [13] KOSHTI A M. Modeling the x-ray process and x-ray flaw size parameter for POD studies[R]. San Diego,America: NASA,2014.
    [14] THOMPSON R B,BRASCHE L J. Recent advances in model-assisted probability of detection[R]. Berlin,Germany: European-American Workshop on Reliability of NDE,2009.
    [15] KIM F H,PINTAR A,OBATON A F,et al. Merging experiments and computer simulations in X-ray Computed Tomography probability of detection analysis of additive manufacturing flaws[J]. NDT & E International,2021,119: 102416.
    [16] FERNANDEZ R,CLÉMENT L,TISSEUR D,et al. Modelling for NDT recent and future developments in the CIVA RT/CT module[R]. Munich,Germany: World Conference on Non-Destructive Testing,2016.
    [17] DAVID T,CAROLINE V,PIERRE G,et al. A modified detectability criterion for conventional radiography simulation[R]. Munich,Germany: World Conference on Non-Destructive Testing,2016.
    [18] HERMINE L,DAVID T,BERNARD R,et al. Validation of CIVA RT module for nuclear applications[R]. Dubrovnik,The Republic of Croatia: 12th International Conference on NDE in Relation to Structural Integrity for Nuclear and Pressurized Components,2016.
    [19] Department of Defense. Nondestructive evaluation system reliability assessment[R]. Washington,US: AirForce,2009.
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  65
  • HTML浏览量:  34
  • PDF量:  22
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-02
  • 网络出版日期:  2023-11-29

目录

    /

    返回文章
    返回