留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

冰晶粒子运动过程中的相变特性

黄平 卜雪琴 林贵平 郁嘉

黄平,卜雪琴,林贵平,等.冰晶粒子运动过程中的相变特性[J].航空动力学报,2022,37(7):1379‑1391. doi: 10.13224/j.cnki.jasp.20210484
引用本文: 黄平,卜雪琴,林贵平,等.冰晶粒子运动过程中的相变特性[J].航空动力学报,2022,37(7):1379‑1391. doi: 10.13224/j.cnki.jasp.20210484
HUANG Ping,BU Xueqin,LIN Guiping,et al.Phase transition characteristics of ice crystal particles in motion[J].Journal of Aerospace Power,2022,37(7):1379‑1391. doi: 10.13224/j.cnki.jasp.20210484
Citation: HUANG Ping,BU Xueqin,LIN Guiping,et al.Phase transition characteristics of ice crystal particles in motion[J].Journal of Aerospace Power,2022,37(7):1379‑1391. doi: 10.13224/j.cnki.jasp.20210484

冰晶粒子运动过程中的相变特性

doi: 10.13224/j.cnki.jasp.20210484
基金项目: 

结冰与防除冰重点实验室开放课题 IADL20210102

国家重点研发计划 2021YFB2601700

国家科技重大专项(2017⁃Ⅷ⁃0003⁃0114) 

详细信息
    作者简介:

    黄平(1997-),男,博士生,研究方向为飞机和发动机结冰与防除冰。

    通讯作者:

    卜雪琴(1982-),女,教授、博士生导师,博士,研究方向为飞机和发动机结冰与防除冰。E⁃mail:buxueqin@buaa.edu.cn

  • 中图分类号: V233.94

Phase transition characteristics of ice crystal particles in motion

  • 摘要:

    针对冰晶在温暖环境下运动时固液汽耦合的相变现象,基于欧拉法建立了冰晶粒子的运动相变模型和计算方法。计算了冰晶粒子在强迫对流环境下的融化相变过程,与实验结果对比验证了运动相变模型和计算方法的准确性。针对NACA0012翼型计算了冰晶绕流运动时的热力学特性,得到了冰晶粒子到达撞击表面时的融化状态与收集系数。研究了冰晶粒径大小、初始球形度、气流相对湿度和温度对运动相变的影响。结果表明:冰晶粒子运动相变模型可以有效地评估冰晶结冰风险,冰晶粒子的融化速率主要取决于粒子直径、球形度、气流温度、湿度等因素,环境温度为288 K时冰晶粒子的融化时间为27.5 s,而相同条件下环境温度为302 K时的融化时间仅有5.2 s。

     

  • 图 1  非球形冰晶粒子融化过程中形状的演变

    Figure 1.  Shape evolution of non⁃spherical ice particle during melting process

    图 2  冰粒子融化过程中三个阶段

    Figure 2.  Three stages of ice particle melting process

    图 3  计算域网格

    Figure 3.  Computational domain mesh

    图 4  融化时间计算值和实验值的对比

    Figure 4.  Comparison between computation and experiment values of melting time

    图 5  完全融化后粒径计算值与实验值的对比

    Figure 5.  Comparison between computation and experiment values of particle size after complete melting

    图 6  粒子温度随时间的变化

    Figure 6.  Variation of particle temperature with time

    图 7  固态冰和液态水的体积分数随时间的变化

    Figure 7.  Variation of volume fraction of solid ice and liquid water with time

    图 8  计算域网格划分

    Figure 8.  Computational domain mesh

    图 9  不同底层网格厚度时表面压力结果对比

    Figure 9.  Comparison of pressure results with different bottom mesh thickness

    图 10  粒子总的体积分数云图

    Figure 10.  Contours of particle total volume fraction

    图 11  固态冰的体积分数云图

    Figure 11.  Contours of solid ice volume fraction

    图 12  液态水的体积分数云图

    Figure 12.  Contours of liquid water volume fraction

    图 13  冰晶粒子局部收集系数

    Figure 13.  Local collection coefficient of ice crystals

    图 14  机翼前缘冰晶融化率

    Figure 14.  Melting rate of ice crystals at the leading edge of the wing

    图 15  融化时间与初始粒径大小的关系

    Figure 15.  Relationship between melting time and initial particle size

    图 16  蒸发占比与初始粒径大小的关系

    Figure 16.  Relationship between evaporation ratio and initial particle size

    图 17  融化时间与粒子球形度的关系

    Figure 17.  Relationship between melting time and particle sphericity

    图 18  蒸发占比与粒子球形度的关系

    Figure 18.  Relationship between evaporation ratio and particle sphericity

    图 19  融化时间与气流相对湿度的关系

    Figure 19.  Relationship between melting time and air relative humidity

    图 20  蒸发占比与气流相对湿度的关系

    Figure 20.  Relationship between evaporation ratio and air relative humidity

    图 21  融化时间与气流温度关系

    Figure 21.  Relationship between melting time and air temperature

    图 22  蒸发占比与气流温度关系

    Figure 22.  Relationship between evaporation ratio and air temperature

    表  1  Hauk实验条件

    Table  1.   Hauk's experimental conditions

    算例气流速度/(m/s)气流温度/K相对湿度/%环境压力/Pa初始温度/K粒子球形度粒径/μm
    11293.2494 900256.41715
    21293.2494 900256.41994
    31292.8495 870255.50.7551
    41293.1494 9002570.841 071
    51.25293.2497 2002571915
    60.75288.26495 100256.41775
    70.75288.26495 100256.91591
    80.75288.36195 3002560.49690
    91293.27594 900256.211 013
    101293.27594 900256.51978
    111293.27895 600257.90.781 013
    下载: 导出CSV
  • [1] MASON J G,STRAPP J W,CHOW P.The ice particle threat to engines in flight[R].AIAA 2006⁃206,2006.
    [2] 陈光.GEnx 发动机结冰问题初探[J].国际航空,2014(2):72⁃73.

    CHEN Guang.Discussion on GEnx engine icing[J].International Aviation,2014(2):72⁃73.(in Chinese)
    [3] MASON J G,CHOW P,FULEKI D M.Understanding ice crystal accretion and shedding phenomenon in jet engines using a rig test[J].Journal of Engineering for Gas Turbines and Power,2011,133(4):1⁃8.
    [4] 刘增承.关于发动机内部结冰的探讨[R].北京:全国飞行技术和飞行安全研讨会,2000.
    [5] CURRIE T C,STRUK P M,TSAO J C,et al.Fundamental study of mixed⁃phase icing with application to ice crystal accretion in aircraft jet engines[R].AIAA 2012⁃2035,2012.
    [6] CURRIE T C,FULEKI D,MAHALLATI A.Experimental studies of mixed⁃phase sticking efficiency for ice crystal accretion in jet engines[R].AIAA 2014⁃3049,2014.
    [7] STRUK P M,BARTKUS T,TSAO J C,et al.Ice accretion measurements on an airfoil and wedge in mixed⁃phase conditions[R].SAE Paper 2015⁃01⁃2116,2015.
    [8] CURRIE T C,FULEKI D.Experimental results for ice crystal icing on hemispherical and double wedge geometries at varying mach numbers and wet bulb temperatures[R].AIAA 2016⁃3740,2016.
    [9] LIBBRECHT K G.The physics of snow crystals[J].Reports on Progress in Physics,2005,68(4):855⁃895.
    [10] HAUK T,ROISMAN I V,TROPEA C D.Investigation of the melting behaviour of ice particles in an acoustic levitator[R].AIAA 2014⁃2261,2014.
    [11] HAUK T,BONACCURSO E,VILLEDIEU P,et al.Theoretical and experimental investigation of the melting process of ice particles[J].Journal of Thermophysics & Heat Transfer,2016,30(4):946⁃954.
    [12] HAUK T.Investigation of the impact and melting process of ice particles[D].München,Germany:Technische Universität Darmstadt,2016.
    [13] AYAN E,OZGEN S,MURAT C,et al.Prediction of ice crystal accretion with TAICE[R].SAE Paper 2015⁃01⁃2148,2015.
    [14] GRIFT E,NORDE E,DER E,et al.Computational method for ice crystal trajectories in a turbofan compressor[R].SAE Paper 2015⁃01⁃2139,2015.
    [15] AOUIZERATE G,CHARTON V,BALLAND M,et al.Ice crystals trajectory calculations in a turbofan engine[R].AIAA 2018⁃4130,2018.
    [16] 卜雪琴,李皓,黄平,等.二维机翼混合相结冰数值模拟[J].航空学报,2020,41(12):200⁃210.

    BU Xueqin,LI Hao,HUANG Ping,et al.Numerical simulation of mixed phase icing on two⁃dimensional airfoil[J].Acta Aeronautica et Astronautica Sinica,2020,41(12):200⁃210.(in Chinese)
    [17] IULIANO E,MONTREUI E,NORDE E,et al.Modelling of non⁃spherical particle evolution for ice crystals simulation with an Eulerian approach[R].SAE Paper 2015⁃01⁃2138,2015.
    [18] VILLEDIEU P,TRONTIN P,CHAUVIN R.Glaciated and mixed phase ice accretion modeling using ONERA 2D icing suite[R].AIAA 2014⁃2199,2014.
    [19] TRONTIN P,BLANCHARD G,VILLEDIEU P.A comprehensive numerical model for mixed⁃phase and glaciated icing conditions[R].AIAA 2016⁃3742,2016.
    [20] NORDE E,SENONER J M,VAN D,et al.Eulerian and Lagrangian ice⁃crystal trajectory simulations in a generic turbofan compressor[J].Journal of Propulsion and Power,2019,35(1):26⁃40.
    [21] NORDE E.Eulerian method for ice crystal icing in turbofan engines[D].Enschede,The Netherlands:University of Twente,2017.
    [22] GANSER G H.A rational approach to drag prediction of spherical and nonspherical particles[J].Powder Technology,1993,77(2):143⁃152.
    [23] MASON B J.On the melting of hailstones[J].Quarterly Journal of the Royal Meteorological Society,1956,82(352):209‑216.
    [24] CROWE C T,SOMMERFELD M,TSUJI Y.Multiphase flows with droplets and particles[M].Boca Raton,US:CRC Press,2011.
    [25] SONNTAG D.Important new values of the physical constants of 1986,vapour pressure formulations based on the ITS⁃90,and psychrometer formulae[J].Zeitschrift für Meteorologie,1990,40(5):340⁃344.
    [26] 杨胜华,林贵平,申晓斌.三维复杂表面水滴撞击特性计算[J].航空动力学报,2010,25(2):284⁃290.

    YANG Shenghua,LIN Guiping,SHEN Xiaobin.Calculation of water droplet impact characteristics on three⁃dimensional complex surface[J].Journal of Aeronautical power,2010,25(2):284⁃290.(in Chinese)
    [27] 申晓斌,林贵平,杨胜华.三维发动机进气道水滴撞击特性分析[J].北京航空航天大学学报,2011,37(1):1⁃5.

    SHEN Xiaobin,LIN Guiping,YANG Shenghua.Analysis of water droplet impact characteristics in three⁃dimensional engine inlet[J].Journal of Beijing University of Aeronautics and Astronautics,2011,37(1):1⁃5.(in Chinese)
  • 加载中
图(22) / 表(1)
计量
  • 文章访问数:  73
  • HTML浏览量:  5
  • PDF量:  19
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-02

目录

    /

    返回文章
    返回