Suppressing oscillation method of supersonic combustion and flow in transitional cavity
-
摘要:
针对长深比为10.0的过渡型凹腔在隔离段入口马赫数为3.0条件下存在的冷流自激振荡现象,提出了一种凹腔内增加肋条抑制振荡的方案。通过试验和数值计算,对该方案抑制振荡的效果进行了检验,并分析了肋条增加前后燃烧室流场结构和燃烧性能的差别。研究发现:通过在凹腔内增加肋条能够消除过渡型凹腔冷流工况下存在的175.8 Hz的自激振荡,燃烧流场也更加稳定;增加肋条后凹腔的稳焰能力有所降低,部分在凹腔未完全燃烧的煤油进入扩张段后继续发生反应,从而使燃烧区向下游延伸、增大,发动机的燃烧效率和净推力分别降低5.4%和8.9%,但推力更加平稳;燃烧室一维平均热流密度峰值由2.9 MW/m2降低至1.8 MW/m2,燃烧室的热环境大幅改善。
Abstract:Targeting the phenomenon of non-reacting flow self-excited oscillation in a traditional cavity with a length-to-depth of 10.0 under the isolator entrance condition of Mach number 3.0, a scheme to suppress the oscillation by adding a rib in the cavity was proposed. Through experiments and numerical calculations, the effect of this scheme on suppressing oscillation was verified, and the differences in the flow field structure and combustion performance of the combustor with/without the rib were analyzed. It was found that adding a rib in the cavity can effectively eliminate the self-excited oscillation of 175.8 Hz under the non-reacting flow condition, and the reacting flow field was more stable. The flame stabilization ability of the cavity was reduced after the rib was added, and some kerosene not completely burned in the cavity continued to react after entering the divergent section, so as to extend and enlarge the combustion zone downstream. The combustion efficiency and net thrust of the engine were reduced by 5.4% and 8.9%, respectively, but the thrust was more stable. The peak value of one-dimensional averaged heat flux was also reduced from 2.9 MW/m2 to 1.8 MW/m2, which optimized the thermal environment of the combustor.
-
表 1 来流条件
Table 1. Inflow condition
马赫数 分子量 摩尔分数/% 静温/K 静压/kPa 水 氧气 氮气 3.0 26.71 21.4 21.3 57.3 545.2 44.0 表 2 燃烧性能
Table 2. Combustion performance
参数 基础凹腔 三维凹腔 燃烧
效率/%凹腔出口处 76.6 48.1 扩张段出口处 98.5 93.1 壁面压力
积分/N冷流工况 175.5*(38.2~312.9) 178.8 燃烧工况 −109.5*(−142.8~−76.2) −80.7 净推力/N 285.0* 259.5 注:右上角带有星号“*”角标的数字表示推力积分波动值的平均值。 -
[1] MATHUR T,GRUBER M,JACKSON K,et al. Supersonic combustion experiments with a cavity-based fuel injector[J]. Journal of Propulsion and Power,2001,17(6): 1305-1312. doi: 10.2514/2.5879 [2] 贾真. 超声速燃烧室中壁面凹腔结构的稳焰机理[J]. 航空动力学报,2013,28(6): 1392-1401.JIA Zhen. Flame-holding mechanism of cavity structure in supersonic combustor[J]. Journal of Aerospace Power,2013,28(6): 1392-1401. (in Chinese) [3] ZHANG X,EDWARDS J A. An investigation of supersonic oscillatory cavity flows driven by thick shear layers[J]. Aeronautical Journal,1990,94(12): 355-364. [4] KUMAR A,BUSHNELL D M,HUSSAINI M Y. Mixing augmentation technique for hypervelocity scramjet[J]. Journal of Propulsion and Power,1989,5(5): 514-522. doi: 10.2514/3.23184 [5] 杨党国,范召林,李建强,等. 超声速空腔流激振荡与声学特性研究[J]. 航空动力学报,2010,25(7): 1567-1572.YANG Dangguo,FAN Zhaolin,LI Jianqiang,et al. Cavity flow oscillations and aeroacoustic characteristics at supersonic speeds[J]. Journal of Aerospace Power,2010,25(7): 1567-1572. (in Chinese) [6] 孙明波. 超声速来流稳焰凹腔的流动及火焰稳定机制研究[D]. 长沙: 国防科技大学, 2008.SUN Mingbo. Studies on flow patterns and flameholding mechanisms of cavity flameholders in supersonic flows[D]. Changsha: National University of Defense Technology, 2008. (in Chinese) [7] 谭建国,潘余,王振国. 冲压发动机燃烧室内低频燃烧不稳定试验[J]. 推进技术,2011,32(2): 188-190.TAN Jianguo,PAN Yu,WANG Zhenguo. Experimental research on low-frequency instability in ramjet combustor[J]. Journal of Propulsion Technology,2011,32(2): 188-190. (in Chinese) [8] 汪洪波. 超声速来流中凹腔稳定的射流燃烧模式及振荡机制研究[D]. 长沙: 国防科技大学, 2012.WANG Hongbo. Combustion modes and oscillation mechanisms of cavity-stabilized jet combustion in supersonic flows[D]. Changsha: National University of Defense Technology, 2012. (in Chinese) [9] 田野,乐嘉陵,杨顺华,等. 乙烯燃料超燃冲压发动机流场振荡及其控制研究[J]. 推进技术,2015,36(7): 961-967. doi: 10.13675/j.cnki.tjjs.2015.07.001TIAN Ye,LE Jialing,YANG Shunhua,et al. Study on flow oscillation and its control methods in an ethylene-fueled scramjet combustor[J]. Journal of Propulsion Technology,2015,36(7): 961-967. (in Chinese) doi: 10.13675/j.cnki.tjjs.2015.07.001 [10] 钟富宇,乐嘉陵,韩亦宇,等. 当量比对氢燃料超燃燃烧室流场结构和燃烧模态影响研究[J]. 推进技术,2019,40(2): 324-330. doi: 10.13675/j.cnki.tjjs.170776ZHONG Fuyu,LE Jialing,HAN Yiyu,et al. Investigation for effects of equivalence ratio on flow structure and combustion mode in a hydrogen fueled scramjet combustor[J]. Journal of Propulsion Technology,2019,40(2): 324-330. (in Chinese) doi: 10.13675/j.cnki.tjjs.170776 [11] NENMENI V A, YU K. Cavity-induced mixing enhancement in confined supersonic flows[R]. AIAA-2002-1010, 2002. [12] 肖隐利,杨顺华,宋文艳,等. 超声速燃烧室凹槽动态特性试验研究[J]. 实验流体力学,2010,24(5): 7-12. doi: 10.3969/j.issn.1672-9897.2010.05.002XIAO Yinli,YANG Shunhua,SONG Wenyan,et al. Experimental study of cavity flow oscillations in a scramjet combustor[J]. Journal of Experiments in Fluid Mechanics,2010,24(5): 7-12. (in Chinese) doi: 10.3969/j.issn.1672-9897.2010.05.002 [13] ROCKWELL D,NAUDASCHER E. Review-self-sustaining oscillations of flow past cavities[J]. Journal of Fluids Engineering,1978,100(6): 152-165. [14] SAHOO D, ANNASWAMY A, ZHUANG N, et al. Control of cavity tones in supersonic flow[R]. AIAA-2005-793, 2005. [15] ROSSITER J E. Wind-tunnel experiments on the flow over rectangular cavities at supersonic and transonic speeds[R]. Reports and Memoranda No.3438, 1964. [16] HELLER H H, BLISS D B. Aerodynamically induced pressure oscillations in cavities: physical mechanisms and suppression concepts[R]. AFFDL-TR-74-133, 1975. [17] LI W, NONOMURA T, OYAMA A, et al. LES study of feedback-loop mechanism of supersonic open cavity flows[R]. AIAA-2010-5112, 2010. [18] 王西耀,杨顺华,乐嘉陵. 超燃冲压发动机带凹槽的燃烧室流场振荡研究[J]. 推进技术,2013,34(5): 651-657.WANG Xiyao,YANG Shunhua,LE Jialing. A study on flow oscillation in scramjet combustor with cavity[J]. Journal of Propulsion Technology,2013,34(5): 651-657. (in Chinese) [19] 孙明波,蔡尊,王亚男,等. 非稳态超声速燃烧研究进展[J]. 空气动力学学报,2020,38(3): 532-551.SUN Mingbo,CAI Zun,WANG Yanan,et al. Overview on the research process of unsteady supersonic combustion[J]. Acta Aerodynamica Sinica,2020,38(3): 532-551. (in Chinese) [20] 赵慧勇. 超燃冲压整体发动机并行数值研究[D]. 四川 绵阳: 中国空气动力研究与发展中心, 2005.ZHAO Huiyong. Parallel numerical study of whole scramjet engine[D]. Mianyang Sichuan: China Aerodynamics Research and Development Center, 2005. (in Chinese) [21] 吴杰. 高超声速内外流耦合流动中的高效高精度计算方法研究[D]. 西安: 西北工业大学, 2020.WU Jie. Research on high efficient and high accurate computational methods for hypersonic internal and external coupled flow[D]. Xi’an: Northwestern Polytechnical University, 2020. (in Chinese) [22] 晏至辉,肖保国,何粲,等. 煤油燃料超燃发动机燃烧室温度测量与计算分析[J]. 航空动力学报,2019,34(3): 521-528.YAN Zhihui,XIAO Baoguo,HE Can,et al. Temperature measurement and calculation analysis in a kerosene-fueled scramjet combustor[J]. Journal of Aerospace Power,2019,34(3): 521-528. (in Chinese) [23] 范周琴,何粲,肖保国. 壁温比对圆截面隔离段激波串的影响研究[J]. 推进技术,2019,40(8): 1720-1726.FAN Zhouqin,HE Can,XIAO Baoguo. Effects of wall temperature ratio on shock train in cylindrical isolator[J]. Journal of Propulsion Technology,2019,40(8): 1720-1726. (in Chinese) [24] EMMANUEL D, MARC B. Computational analysis of a kerosene-fuelled scramjet[R]. AIAA-2001-1817, 2001. [25] 谭玉婷. 空腔非定常流动特性的数值模拟研究[D]. 南京: 南京航空航天大学, 2009.TAN Yuting. Numerical simulation of the unsteady cavity flow features[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2009. (in Chinese)