留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

过渡型凹腔超声速燃烧流动振荡抑制方法

蔡建华 田野 肖保国 邢建文

蔡建华, 田野, 肖保国, 等. 过渡型凹腔超声速燃烧流动振荡抑制方法[J]. 航空动力学报, 2023, 38(3):578-587 doi: 10.13224/j.cnki.jasp.20210495
引用本文: 蔡建华, 田野, 肖保国, 等. 过渡型凹腔超声速燃烧流动振荡抑制方法[J]. 航空动力学报, 2023, 38(3):578-587 doi: 10.13224/j.cnki.jasp.20210495
CAI Jianhua, TIAN Ye, XIAO Baoguo, et al. Suppressing oscillation method of supersonic combustion and flow in transitional cavity[J]. Journal of Aerospace Power, 2023, 38(3):578-587 doi: 10.13224/j.cnki.jasp.20210495
Citation: CAI Jianhua, TIAN Ye, XIAO Baoguo, et al. Suppressing oscillation method of supersonic combustion and flow in transitional cavity[J]. Journal of Aerospace Power, 2023, 38(3):578-587 doi: 10.13224/j.cnki.jasp.20210495

过渡型凹腔超声速燃烧流动振荡抑制方法

doi: 10.13224/j.cnki.jasp.20210495
基金项目: 中国空气动力研究与发展中心基础和前沿技术研究基金(PJD20190073)
详细信息
    作者简介:

    蔡建华(1993-),男,助理研究员,硕士,主要从事超声速燃烧流动研究。E-mail:caijianhua.1993@163.com

    通讯作者:

    肖保国(1980-),男,研究员,博士,主要从事超声速燃烧流动研究。E-mail:xbgxl@163.com

  • 中图分类号: V235.21

Suppressing oscillation method of supersonic combustion and flow in transitional cavity

  • 摘要:

    针对长深比为10.0的过渡型凹腔在隔离段入口马赫数为3.0条件下存在的冷流自激振荡现象,提出了一种凹腔内增加肋条抑制振荡的方案。通过试验和数值计算,对该方案抑制振荡的效果进行了检验,并分析了肋条增加前后燃烧室流场结构和燃烧性能的差别。研究发现:通过在凹腔内增加肋条能够消除过渡型凹腔冷流工况下存在的175.8 Hz的自激振荡,燃烧流场也更加稳定;增加肋条后凹腔的稳焰能力有所降低,部分在凹腔未完全燃烧的煤油进入扩张段后继续发生反应,从而使燃烧区向下游延伸、增大,发动机的燃烧效率和净推力分别降低5.4%和8.9%,但推力更加平稳;燃烧室一维平均热流密度峰值由2.9 MW/m2降低至1.8 MW/m2,燃烧室的热环境大幅改善。

     

  • 图 1  直连式脉冲燃烧风洞[10]

    Figure 1.  Direct-connected pulse combustion wind tunnel[10]

    图 2  风洞试验段(单位:mm)

    Figure 2.  Test section of wind tunnel (unit:mm)

    图 3  喷注支杆示意图(单位:mm)

    Figure 3.  Sketch map of the injection strut (unit:mm)

    图 4  两种不同构型的凹腔

    Figure 4.  Two cavities with different configurations

    图 5  基础凹腔计算模型

    Figure 5.  Calculation model of basic cavity

    图 6  网格无关性验证

    Figure 6.  Grid independence verification

    图 7  基础凹腔一个周期内波系结构

    Figure 7.  Waves system of basic cavity in one period

    图 8  冷流工况下基础凹腔的壁面压力

    Figure 8.  Wall pressure of basic cavity under non-reacting flow

    图 9  基础凹腔流场不同切面马赫数分布

    Figure 9.  Mach number distributions on different slices of basic cavity

    图 10  基础凹腔对称面流场结构

    Figure 10.  Flow field on symmetry plane of basic cavity

    图 11  三维凹腔波系结构

    Figure 11.  Waves system of three-dimensional cavity

    图 12  冷流流动时声压级曲线

    Figure 12.  Sound pressure level of non-reacting flow

    图 13  三维凹腔不同切面流场结构

    Figure 13.  Flow field at different slices of three-dimensional cavity

    图 14  两种凹腔燃烧流场对比

    Figure 14.  Comparison of reacting flow fields of two cavities

    图 15  燃烧工况下基础凹腔壁面压力

    Figure 15.  Wall pressure of basic cavity under reacting flow

    图 16  燃烧工况下三维凹腔壁面压力

    Figure 16.  Wall pressure of three-dimensional cavity underreacting flow

    图 17  燃烧工况下基础凹腔内非稳态现象

    Figure 17.  Unsteady phenomenon of basic cavity under reacting flow

    图 18  燃烧工况下三维凹腔内的马赫数和温度分布

    Figure 18.  Mach number and temperature distribution of three-dimensional cavity under reacting flow

    图 19  燃烧工况下的声压级曲线

    Figure 19.  Sound pressure level under reaction flow

    图 20  燃烧工况下凹腔中心线沿程压力分布对比

    Figure 20.  Comparison of wall pressure distributions along centerline under reacting flow

    图 21  壁面热流密度分布对比

    Figure 21.  Comparison of heat flux distributions

    图 22  壁面一维热流密度分布对比

    Figure 22.  Comparison of one-dimensional heat flux distributions

    表  1  来流条件

    Table  1.   Inflow condition

    马赫数分子量摩尔分数/%静温/K静压/kPa
    氧气氮气
    3.026.7121.421.357.3545.244.0
    下载: 导出CSV

    表  2  燃烧性能

    Table  2.   Combustion performance

    参数基础凹腔三维凹腔
    燃烧
    效率/%
    凹腔出口处76.648.1
    扩张段出口处98.593.1
    壁面压力
    积分/N
    冷流工况175.5*(38.2~312.9)178.8
    燃烧工况−109.5*(−142.8~−76.2)−80.7
    净推力/N285.0*259.5
    注:右上角带有星号“*”角标的数字表示推力积分波动值的平均值。
    下载: 导出CSV
  • [1] MATHUR T,GRUBER M,JACKSON K,et al. Supersonic combustion experiments with a cavity-based fuel injector[J]. Journal of Propulsion and Power,2001,17(6): 1305-1312. doi: 10.2514/2.5879
    [2] 贾真. 超声速燃烧室中壁面凹腔结构的稳焰机理[J]. 航空动力学报,2013,28(6): 1392-1401.

    JIA Zhen. Flame-holding mechanism of cavity structure in supersonic combustor[J]. Journal of Aerospace Power,2013,28(6): 1392-1401. (in Chinese)
    [3] ZHANG X,EDWARDS J A. An investigation of supersonic oscillatory cavity flows driven by thick shear layers[J]. Aeronautical Journal,1990,94(12): 355-364.
    [4] KUMAR A,BUSHNELL D M,HUSSAINI M Y. Mixing augmentation technique for hypervelocity scramjet[J]. Journal of Propulsion and Power,1989,5(5): 514-522. doi: 10.2514/3.23184
    [5] 杨党国,范召林,李建强,等. 超声速空腔流激振荡与声学特性研究[J]. 航空动力学报,2010,25(7): 1567-1572.

    YANG Dangguo,FAN Zhaolin,LI Jianqiang,et al. Cavity flow oscillations and aeroacoustic characteristics at supersonic speeds[J]. Journal of Aerospace Power,2010,25(7): 1567-1572. (in Chinese)
    [6] 孙明波. 超声速来流稳焰凹腔的流动及火焰稳定机制研究[D]. 长沙: 国防科技大学, 2008.

    SUN Mingbo. Studies on flow patterns and flameholding mechanisms of cavity flameholders in supersonic flows[D]. Changsha: National University of Defense Technology, 2008. (in Chinese)
    [7] 谭建国,潘余,王振国. 冲压发动机燃烧室内低频燃烧不稳定试验[J]. 推进技术,2011,32(2): 188-190.

    TAN Jianguo,PAN Yu,WANG Zhenguo. Experimental research on low-frequency instability in ramjet combustor[J]. Journal of Propulsion Technology,2011,32(2): 188-190. (in Chinese)
    [8] 汪洪波. 超声速来流中凹腔稳定的射流燃烧模式及振荡机制研究[D]. 长沙: 国防科技大学, 2012.

    WANG Hongbo. Combustion modes and oscillation mechanisms of cavity-stabilized jet combustion in supersonic flows[D]. Changsha: National University of Defense Technology, 2012. (in Chinese)
    [9] 田野,乐嘉陵,杨顺华,等. 乙烯燃料超燃冲压发动机流场振荡及其控制研究[J]. 推进技术,2015,36(7): 961-967. doi: 10.13675/j.cnki.tjjs.2015.07.001

    TIAN Ye,LE Jialing,YANG Shunhua,et al. Study on flow oscillation and its control methods in an ethylene-fueled scramjet combustor[J]. Journal of Propulsion Technology,2015,36(7): 961-967. (in Chinese) doi: 10.13675/j.cnki.tjjs.2015.07.001
    [10] 钟富宇,乐嘉陵,韩亦宇,等. 当量比对氢燃料超燃燃烧室流场结构和燃烧模态影响研究[J]. 推进技术,2019,40(2): 324-330. doi: 10.13675/j.cnki.tjjs.170776

    ZHONG Fuyu,LE Jialing,HAN Yiyu,et al. Investigation for effects of equivalence ratio on flow structure and combustion mode in a hydrogen fueled scramjet combustor[J]. Journal of Propulsion Technology,2019,40(2): 324-330. (in Chinese) doi: 10.13675/j.cnki.tjjs.170776
    [11] NENMENI V A, YU K. Cavity-induced mixing enhancement in confined supersonic flows[R]. AIAA-2002-1010, 2002.
    [12] 肖隐利,杨顺华,宋文艳,等. 超声速燃烧室凹槽动态特性试验研究[J]. 实验流体力学,2010,24(5): 7-12. doi: 10.3969/j.issn.1672-9897.2010.05.002

    XIAO Yinli,YANG Shunhua,SONG Wenyan,et al. Experimental study of cavity flow oscillations in a scramjet combustor[J]. Journal of Experiments in Fluid Mechanics,2010,24(5): 7-12. (in Chinese) doi: 10.3969/j.issn.1672-9897.2010.05.002
    [13] ROCKWELL D,NAUDASCHER E. Review-self-sustaining oscillations of flow past cavities[J]. Journal of Fluids Engineering,1978,100(6): 152-165.
    [14] SAHOO D, ANNASWAMY A, ZHUANG N, et al. Control of cavity tones in supersonic flow[R]. AIAA-2005-793, 2005.
    [15] ROSSITER J E. Wind-tunnel experiments on the flow over rectangular cavities at supersonic and transonic speeds[R]. Reports and Memoranda No.3438, 1964.
    [16] HELLER H H, BLISS D B. Aerodynamically induced pressure oscillations in cavities: physical mechanisms and suppression concepts[R]. AFFDL-TR-74-133, 1975.
    [17] LI W, NONOMURA T, OYAMA A, et al. LES study of feedback-loop mechanism of supersonic open cavity flows[R]. AIAA-2010-5112, 2010.
    [18] 王西耀,杨顺华,乐嘉陵. 超燃冲压发动机带凹槽的燃烧室流场振荡研究[J]. 推进技术,2013,34(5): 651-657.

    WANG Xiyao,YANG Shunhua,LE Jialing. A study on flow oscillation in scramjet combustor with cavity[J]. Journal of Propulsion Technology,2013,34(5): 651-657. (in Chinese)
    [19] 孙明波,蔡尊,王亚男,等. 非稳态超声速燃烧研究进展[J]. 空气动力学学报,2020,38(3): 532-551.

    SUN Mingbo,CAI Zun,WANG Yanan,et al. Overview on the research process of unsteady supersonic combustion[J]. Acta Aerodynamica Sinica,2020,38(3): 532-551. (in Chinese)
    [20] 赵慧勇. 超燃冲压整体发动机并行数值研究[D]. 四川 绵阳: 中国空气动力研究与发展中心, 2005.

    ZHAO Huiyong. Parallel numerical study of whole scramjet engine[D]. Mianyang Sichuan: China Aerodynamics Research and Development Center, 2005. (in Chinese)
    [21] 吴杰. 高超声速内外流耦合流动中的高效高精度计算方法研究[D]. 西安: 西北工业大学, 2020.

    WU Jie. Research on high efficient and high accurate computational methods for hypersonic internal and external coupled flow[D]. Xi’an: Northwestern Polytechnical University, 2020. (in Chinese)
    [22] 晏至辉,肖保国,何粲,等. 煤油燃料超燃发动机燃烧室温度测量与计算分析[J]. 航空动力学报,2019,34(3): 521-528.

    YAN Zhihui,XIAO Baoguo,HE Can,et al. Temperature measurement and calculation analysis in a kerosene-fueled scramjet combustor[J]. Journal of Aerospace Power,2019,34(3): 521-528. (in Chinese)
    [23] 范周琴,何粲,肖保国. 壁温比对圆截面隔离段激波串的影响研究[J]. 推进技术,2019,40(8): 1720-1726.

    FAN Zhouqin,HE Can,XIAO Baoguo. Effects of wall temperature ratio on shock train in cylindrical isolator[J]. Journal of Propulsion Technology,2019,40(8): 1720-1726. (in Chinese)
    [24] EMMANUEL D, MARC B. Computational analysis of a kerosene-fuelled scramjet[R]. AIAA-2001-1817, 2001.
    [25] 谭玉婷. 空腔非定常流动特性的数值模拟研究[D]. 南京: 南京航空航天大学, 2009.

    TAN Yuting. Numerical simulation of the unsteady cavity flow features[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2009. (in Chinese)
  • 加载中
图(22) / 表(2)
计量
  • 文章访问数:  215
  • HTML浏览量:  90
  • PDF量:  71
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-06
  • 网络出版日期:  2022-10-26

目录

    /

    返回文章
    返回