留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

爬升阶段涡扇发动机核心流道吸鸟适航审定

吴晶峰 侯亮 宋建宇 杨坤

吴晶峰, 侯亮, 宋建宇, 等. 爬升阶段涡扇发动机核心流道吸鸟适航审定[J]. 航空动力学报, 2023, 38(4):1017-1024 doi: 10.13224/j.cnki.jasp.20210497
引用本文: 吴晶峰, 侯亮, 宋建宇, 等. 爬升阶段涡扇发动机核心流道吸鸟适航审定[J]. 航空动力学报, 2023, 38(4):1017-1024 doi: 10.13224/j.cnki.jasp.20210497
WU Jingfeng, HOU Liang, SONG Jianyu, et al. Airworthiness certification of turbo fan engine core duct bird ingestion during climbing phase[J]. Journal of Aerospace Power, 2023, 38(4):1017-1024 doi: 10.13224/j.cnki.jasp.20210497
Citation: WU Jingfeng, HOU Liang, SONG Jianyu, et al. Airworthiness certification of turbo fan engine core duct bird ingestion during climbing phase[J]. Journal of Aerospace Power, 2023, 38(4):1017-1024 doi: 10.13224/j.cnki.jasp.20210497

爬升阶段涡扇发动机核心流道吸鸟适航审定

doi: 10.13224/j.cnki.jasp.20210497
基金项目: 国家科技重大专项 (2017-Ⅷ-0003-0114)
详细信息
    作者简介:

    吴晶峰(1983-),男,高级工程师,博士,主要研究方向为航空发动机集成审定

    通讯作者:

    侯亮(1987-),男,高级工程师,硕士,主要研究方向为包容与外物吸入适航研究。E-mail:houliang@acae.com.cn

  • 中图分类号: V231.91

Airworthiness certification of turbo fan engine core duct bird ingestion during climbing phase

  • 摘要:

    研究涡扇发动机核心流道吸鸟对发动机的影响,分析核心流道吸鸟与风扇叶片鸟击的损伤模式及关键要素的差异。采用光滑粒子流体动力学方法开展某发动机风扇增压级内涵的吸鸟数值模拟,研究吸鸟位置、鸟速和风扇转速等关键参数对鸟体碎片轨迹及质量分布的影响,确定核心流道吸鸟最严苛工况条件。结果显示:鸟撞击进口导流叶片中心位置时鸟体切片质量较大;在较高鸟速和较低风扇转速下进入内涵的鸟体切片质量较大。研究结果支撑了某型涡扇发动机核心流道吸鸟专用条件的制定,要求在典型的爬升阶段允许的最大爬升速度以及最小风扇转速条件下开展吸鸟试验,同时试验用到的这只鸟的撞击位置应该使吸入核心流道的鸟的质量最大。

     

  • 图 1  增压级叶片折断

    Figure 1.  Failure of booster blades

    图 2  高压压气机叶片损伤

    Figure 2.  Failure of high pressure compressor blades

    图 3  某发动机前端部件

    Figure 3.  Front of the engine

    图 4  核心流道吸鸟仿真模型

    Figure 4.  Simulation model of core duct bird ingestion

    图 5  各吸鸟位置鸟的碎片分布

    Figure 5.  Distribution of bird debris at each bird ingestion location

    图 6  吸鸟后IGV塑性应变云图

    Figure 6.  Plastic strain contours of IGV after bird ingestion

    图 7  不同鸟速工况下的吸鸟过程

    Figure 7.  Bird ingestion process at different bird velocities

    图 8  增压级IGV峰值Von Mises 应力分布

    Figure 8.  Peak Von Mises stress of booster IGV

    图 9  各工况吸鸟后IGV塑性应变云图

    Figure 9.  IGV plastic strain contours on each condition

    表  1  不同撞击位置进入内涵鸟体质量计算结果

    Table  1.   Bird mass entering into inner duct at different impact positions

    编号内涵吸鸟质量/kg
    LOC-10.76
    LOC-20.80
    LOC-30.83
    下载: 导出CSV

    表  2  不同鸟速下的吸鸟工况

    Table  2.   Bird ingestion conditions at different bird velocities

    工况鸟的种类鸟速/(m/s)风扇转速/(r/min)
    1中鸟1303 250
    2中鸟1003 250
    3中鸟753 250
    4中鸟503 250
    下载: 导出CSV

    表  3  各工况下鸟体切片的质量

    Table  3.   Mass of bird slice on each condition

    工况质量/g
    第一切片第二切片第三切片
    1232.1809.9767.4
    2183.2631.3590.1
    3137.4478.2440.7
    488.5317.2253.9
    下载: 导出CSV

    表  4  不同风扇转子转速吸鸟仿真工况

    Table  4.   Simulation conditions for bird ingestion at different fan rotor velocities

    工况鸟速/(m/s)风扇转速/(r/min)代表工况
    11303750起飞
    21303250减推力爬升
    31302750巡航
    41302250进场慢车
    下载: 导出CSV

    表  5  鸟体切片的质量

    Table  5.   Mass of bird slice

    工况质量/g
    第一切片第二切片第三切片
    1208.8693.2666.4
    2232.1809.9767.4
    3263.8942.0905.4
    4313.41 135.9916.1
    下载: 导出CSV
  • [1] 中国民用航空局. 航空发动机适航规定: CCAR-33R2[S]. 北京: 民航出版社, 2011: 42-52.
    [2] Federal Aviation Administration. Airworthiness standards: Part 33 aircraft engines[S]. Washington DC: FAA, 2007: 57-69.
    [3] 郭应文, 周雄, 代磊, 等. 鸟撞航空发动机风扇叶片动态响应数值模拟[C]//2019年(第四届)中国航空科学技术大会论文集. 沈阳: 中国航空学会, 2019: 1014-1020.
    [4] YAN Jun,ZHANG Chenguang,HUO Sixu,et al. Experimental and numerical simulation of bird-strike performance of lattice-material-infilled curved plate[J]. Chinese Journal of Aeronautics,2021,34(8): 245-257. doi: 10.1016/j.cja.2020.09.026
    [5] BOHARI B, SAYMA A. CFD analysis of effects of damage due to bird strike on fan performance[R]. ASME Paper GT2010-22365, 2010.
    [6] LI Y, SAYMA A. Effects of blade damage on the performance of a transonic axial compressor rotor[R]. ASME Paper GT2012-68324, 2012.
    [7] 张海洋,王相平,杜少辉,等. 航空发动机风扇叶片的抗鸟撞设计[J]. 航空动力学报,2020,35(6): 1157-1168.

    ZHANG Haiyang,WANG Xiangping,DU Shaohui,et al. Design for anti-bird impact of aero-engine fan blade[J]. Journal of Aerospace Power,2020,35(6): 1157-1168. (in Chinese)
    [8] 柴象海,张执南,阎军,等. 航空发动机风扇叶片冲击加强轻量化设计[J]. 上海交通大学学报,2020,54(2): 186-192.

    CHAI Xianghai,ZHANG Zhinan,YAN Jun,et al. Lightweight design for improving aeroengine fan blade impact resistance capability[J]. Journal of shanghai Jiao Tong University,2020,54(2): 186-192. (in Chinese)
    [9] 罗刚,陈伟,赵振华,等. 航空发动机吸鸟适航验证关键参数分析方法[J]. 机械科学与技术,2016,35(11): 1774-1779.

    LUO Gang,CHEN Wei,ZHAO Zhenhua,et al. Analysis method of critical parameters on aircraft engines bird ingestion airworthiness certification[J]. Mechanical Science and Technology for Aerospace Engineering,2016,35(11): 1774-1779. (in Chinese)
    [10] 柴象海,侯亮,王志强,等. 航空发动机宽弦风扇叶片鸟撞损伤模型标定[J]. 航空动力学报,2016,31(5): 1032-1038.

    CHAI Xianghai,HOU Liang,WANG Zhiqiang,et al. Bird strike model calibration for an aero engine wide-chord fan blade[J]. Journal of Aerospace Power,2016,31(5): 1032-1038. (in Chinese)
    [11] 陆嘉华,羌晓青,滕金芳,等. 鸟撞损伤风扇气动性能的适航符合性研究[J]. 上海交通大学学报,2017,51(8): 932-938. doi: 10.16183/j.cnki.jsjtu.2017.08.006

    LU Jiahua,QIANG Xiaoqing,TENG Jinfang,et al. Airworthiness compliance research of aerodynamic performance on bird strike damaged fan blades[J]. Journal of Shanghai Jiao Tong University,2017,51(8): 932-938. (in Chinese) doi: 10.16183/j.cnki.jsjtu.2017.08.006
    [12] 郭鹏,刘志远,张桂昌,等. 鸟撞过程中撞击位置与撞击姿态对风扇叶片损伤影响研究[J]. 振动与冲击,2021,40(12): 124-131.

    GUO Peng,LIU Zhiyuan,ZHANG Guichang,et al. Study on effect of bird impact position and attitude on fan blade damage[J]. Journal of Vibration and Shock,2021,40(12): 124-131. (in Chinese)
    [13] 张俊红,刘志远,戴胡伟,等. 撞击位置与风扇转速对鸟撞过程的影响[J]. 天津大学学报(自然科学与工程技术版),2020,53(5): 492-501.

    ZHANG Junhong,LIU Zhiyuan,DAI Huwei,et al. Effect of impact position and fan rotational speed on bird-impact process[J]. Journal of Tianjin University (Science and Technology),2020,53(5): 492-501. (in Chinese)
    [14] National Transportation Safety Board. Loss of thrust in both engines after encountering a flock of birds and sub-sequent ditching on the Hudson River: PB2010-910403[R]. Washington DC: Springfield: National Technical Information Service, 2010.
    [15] HUANG J, LI Y, LIU J, et al. Bird strike on an engine primary compressor at high rotational speed: Numerical simulations and parametric study[C]//Proceedings at the 6th ICCM2015. Auckland, New Zealand: ScienTech Publisher, 2015: 559-569.
    [16] Federal Aviation Administration. Bird Ingestion Certification Standards: AC33.76-1A[S]. Washington DC: Aircraft Certification Service Engine & Propeller Directorate, 2009.
    [17] BUDGEY R. The development of a substitute artificial bird by the international birdstrike research group for use in aircraft component testing[R]. Amsterdam: International Bird Strike Committee ISBC25/WP-IE3, 2000.
    [18] 刘谋斌,宗智,常建忠. 光滑粒子动力学方法的发展与应用[J]. 力学进展,2011,41(2): 217-234.

    LIU Moubin,ZONG Zhi,CHANG Jianzhong. Developments and applications of smoothed particle hydrodynamics[J]. Advances in mechanics,2011,41(2): 217-234. (in Chinese)
  • 加载中
图(9) / 表(5)
计量
  • 文章访问数:  185
  • HTML浏览量:  61
  • PDF量:  72
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-08
  • 网络出版日期:  2022-10-26

目录

    /

    返回文章
    返回