留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于LIBS研究丙烷层流预混火焰温度和当量比的空间分布

刘新 王朝君 胡二江 殷阁媛 黄佐华

刘新, 王朝君, 胡二江, 等. 基于LIBS研究丙烷层流预混火焰温度和当量比的空间分布[J]. 航空动力学报, 2023, 38(4):870-877 doi: 10.13224/j.cnki.jasp.20210506
引用本文: 刘新, 王朝君, 胡二江, 等. 基于LIBS研究丙烷层流预混火焰温度和当量比的空间分布[J]. 航空动力学报, 2023, 38(4):870-877 doi: 10.13224/j.cnki.jasp.20210506
LIU Xin, WANG Chaojun, HU Erjiang, et al. Spatial distribution of propane laminar pre-mixed flame temperature and equivalence ratio based on LIBS[J]. Journal of Aerospace Power, 2023, 38(4):870-877 doi: 10.13224/j.cnki.jasp.20210506
Citation: LIU Xin, WANG Chaojun, HU Erjiang, et al. Spatial distribution of propane laminar pre-mixed flame temperature and equivalence ratio based on LIBS[J]. Journal of Aerospace Power, 2023, 38(4):870-877 doi: 10.13224/j.cnki.jasp.20210506

基于LIBS研究丙烷层流预混火焰温度和当量比的空间分布

doi: 10.13224/j.cnki.jasp.20210506
基金项目: 国家自然科学基金(52176131)
详细信息
    作者简介:

    刘新(1997-),男,硕士生,主要从事燃烧诊断研究

    通讯作者:

    胡二江(1983-),男,教授、博士生导师,博士,主要从事航空发动机点火和燃烧调控研究。E-mail:hujiang@mail.xjtu.edu.cn

  • 中图分类号: V233.3;TK401

Spatial distribution of propane laminar pre-mixed flame temperature and equivalence ratio based on LIBS

  • 摘要:

    激光诱导击穿光谱(LIBS)是监测燃烧过程关键参数的重要手段之一。为此搭建了LIBS三维可移动实验测量平台,结合等离子体能量和光谱研究了丙烷层流预混火焰的空间结构,得到了不同当量比和不同高度的温度趋势和当量比空间分布。结果表明:本生灯火焰预混燃烧区厚度随高度增加而增加;H、N、O的谱线强度和等离子体能量变化趋势一致,说明粒子体积分数是影响等离子体能量的主因。通过标定H656和N746的谱线强度比值与当量比的关系得到了局部当量比的空间分布。

     

  • 图 1  实验装置图

    Figure 1.  Experimental system

    图 2  丙烷本生灯火焰

    Figure 2.  Bunsen burner flame of propane

    图 3  不同谱线强度比随φ变化情况(H=6.5 mm)

    Figure 3.  Variation of different line intensities ratio with φH=6.5 mm)

    图 4  火焰不同高度上μ H656/N746φ变化曲线和线性拟合

    Figure 4.  Variation of μ H656/N746 with φ for different heights and linear fitting

    图 5  入射能量和出射能量关系图

    Figure 5.  Relationship between incident energy and residual energy

    图 6  EthresholdEplasma的径向分布曲线(φ=1.1, H=4.0 mm)

    Figure 6.  Radial distribution of Ethreshold and Eplasmaφ=1.1, H=4.0 mm)

    图 7  Eplasmaφ的关系

    Figure 7.  Relationship between Eplasma and φ

    图 8  EplasmaH=6.5 mm处不同φ的径向分布

    Figure 8.  Radial distribution of Eplasma at H=6.5 mm with different φ

    图 9  Eplasma在当量比φ=0.9不同高度上的径向分布

    Figure 9.  Radial distribution of Eplasma at φ=0.9 with different heights

    图 10  不同高度不同φ下的击穿光谱图

    Figure 10.  Breakdown spectra with different heights and different φ

    图 11  不同高度上H656谱线强度径向分布(φ =0.9)

    Figure 11.  Radial distribution of line intensities of H656 withdifferent heights (φ=0.9)

    图 12  各元素谱线强度径向分布(φ=0.9)

    Figure 12.  Radial distribution of lines intensities of different elments (φ=0.9)

    图 13  局部当量比径向分布情况

    Figure 13.  Radial distribution of local equivalence ratio

    表  1  实验工况表

    Table  1.   Experimental conditions

    流量/(L/min)高度H/mm当量比φ
    44.0, 6.5, 9.00.9, 1.0, 1.45
    下载: 导出CSV

    表  2  谱线强度比值与φ线性拟合参数

    Table  2.   Linear fitting parameters of line intensities ratio with φ

    H/mmR2
    μ H656/N742μ H656/N744μ H656/N746μ H656/O778
    4.00.961190.968910.981130.96934
    6.50.994860.988320.994590.96742
    9.00.970170.987990.982610.82648
    下载: 导出CSV

    表  3  μ H656/N746φ线性拟合参数表

    Table  3.   Linear fitting parameters of μ H656/N746 with φ

    H/mmR2ba
    4.00.981132.184852.56087
    6.50.994592.228612.57575
    9.00.982612.671722.03759
    注:表中ab分别为方程y=a+bx的截距和斜率。
    下载: 导出CSV
  • [1] BARLOW R S,CARTER C D. Raman/Rayleigh/LIF measurements of nitric oxide formation in turbulent hydrogen jet flames[J]. Combustion and Flame,1994,97(3/4): 261-280.
    [2] 刘晶儒,胡志云,张振荣,等. 激光光谱技术在燃烧流场诊断中的应用[J]. 光学精密工程,2011,19(2): 284-296. doi: 10.3788/OPE.20111902.0284

    LIU Jingru,HU Zhiyun,ZHANG Zhenrong,et al. Laser spectroscopy applied to combustion diagnostics[J]. Optics and Precision Engineering,2011,19(2): 284-296. (in Chinese) doi: 10.3788/OPE.20111902.0284
    [3] SINGH S,MARK P B,ROLF D R. Mixing and flame structures inferred from OH-PLIF for conventional and low-temperature diesel engine combustion[J]. Combustion and Flame,2009,156(10): 1898-1908. doi: 10.1016/j.combustflame.2009.07.019
    [4] DONG H,SATIJA A,GOREJAY P,et al. Experimental study of CO2 diluted, piloted, turbulent CH4/air premixed flames using high-repetition-rate OH PLIF[J]. Combustion and Flame,2018,193: 145-156. doi: 10.1016/j.combustflame.2018.03.012
    [5] KUENNE G,SEFFRIN F,FUEST F,et al. Experimental and numerical analysis of a lean premixed stratified burner using 1D Raman/Rayleigh scattering and large eddy simulation[J]. Combustion and Flame,2012,159(8): 2669-2689. doi: 10.1016/j.combustflame.2012.02.010
    [6] QU Zhechao,HOLMGREN P,SKOGLUND N. Distribution of temperature, H2O and atomic potassium during entrained flow biomass combustion-coupling in situ TDLAS with modeling approaches and ash chemistry[J]. Combustion and Flame,2018,188: 488-497. doi: 10.1016/j.combustflame.2017.10.013
    [7] MATTHIAS M S,SCHULZ S,STELZNER B. Determination of temperature and water-concentration in fuel-rich oxy-fuel methane flames applying TDLAS[J]. Combustion and Flame,2020,214: 336-345. doi: 10.1016/j.combustflame.2020.01.003
    [8] HYUNG M J, JOHN H K, LEE S H. Towards simplified monitoring of instantaneous fuel concentration in both liquid and gas fueled flames using a combustor injectable LIBS plug[J]. Energy, 2018, 160: 225-232.
    [9] KIM J H,LEE S H,DO H,et al. Instantaneous monitoring of local fuel concentration in a liquid hydrocarbon-fueled flame using a LIBS plug[J]. Energy,2017,140(1): 18-26.
    [10] WU Yue,GRAGSTON M,ZHANG Zhili. High-pressure 1D fuel/air-ratio measurements with LIBS[J]. Combustion and Flame,2018,198: 120-129. doi: 10.1016/j.combustflame.2018.09.009
    [11] PHUOC T X,WHITE F P. Laser-induced spark for measurements of the fuel-to-air ratio of a combustible mixture[J]. Fuel,2002,81(13): 1761-1765. doi: 10.1016/S0016-2361(02)00105-9
    [12] STAVROPOULOS P,MICHALAKOU A,SKEVIS G,et al. Laser-induced breakdown spectroscopy as an analytical tool for equivalence ratio measurement in methane-air premixed flames[J]. Spectrochimica Acta Part B: Atomic Spectroscopy,2005,60(7): 1092-1097.
    [13] LEE T W,HEGDE N. Laser-induced breakdown spectroscopy for in situ diagnostics of combustion parameters including temperature[J]. Combustion and Flame,2005,142(3): 314-316. doi: 10.1016/j.combustflame.2005.05.003
    [14] KIEFER J, JOHANNES W T. Laser-induced breakdown flame thermometry[J]. Combustion and Flame, 2012, 159(12): 3576-3582.
    [15] TIAN Zhaohua, DONG Meirong. Spatially resolved laser-induced breakdown spectroscopy in laminar premixed methane-air flames[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2017, 136: 8-15.
    [16] WOOD R W. Self-reversal of the red hydrogen line[J]. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science,1926,2(10): 876-880. doi: 10.1080/14786442608564117
    [17] DAVIS J P,SMITH A L. Laser-induced plasma formation in Xe, Ar, N2, and O2 at the first four Nd: YAG harmonics[J]. Applied Optics,1991,30: 4358-4364. doi: 10.1364/AO.30.004358
    [18] ZHANG Z,HUANG S. Influence of the pressure and temperature on laser induced breakdown spectroscopy for gas concentration measurements[J]. Spectrochimica Acta Part B: Atomic Spectroscopy,2019,155: 24-33. doi: 10.1016/j.sab.2019.03.008
    [19] SURMICK D M,PARIGGER C G. Electron density determination of aluminium laser-induced plasma[J]. Journal of Physics B: Atomic, Molecular and Optical Physics,2015,48(11): 115701.1-115701.6. doi: 10.1088/0953-4075/48/11/115701
  • 加载中
图(13) / 表(3)
计量
  • 文章访问数:  305
  • HTML浏览量:  84
  • PDF量:  189
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-11
  • 网络出版日期:  2022-10-26

目录

    /

    返回文章
    返回