Sample entropy characteristics of dynamic pressure at outlet of centrifugal compressor based on EWT
-
摘要:
以800 kW离心压气机从稳定状态经过过渡过程进入喘振状态时段的出口动态压力为研究对象,采用经验小波变换并结合样本熵特征,分析了系统在不同工况下的复杂特性。首先,在分析系统动态压力波形特征的基础上,采用经验小波变换并结合皮尔逊相关系数进行信号的提取。其次,研究了提取信号的样本熵与系统工作状态变化的关联关系,并讨论了经验小波的分解层数和样本熵的维数对分析结果的影响。最后,通过将白噪声加入原始信号以验证该方法的抗干扰性能。研究结果显示:当系统由稳态进入喘振状态时,系统出口动态压力的样本熵表现出明显的突变特性,其值由0突变至0.7左右。从系统参数的选择角度,样本熵维数的变化对系统特征的分析影响较小。并且,采用该方法抗干扰性能较好。
Abstract:Taking the dynamic outlet pressure of the 800 kW centrifugal compressor during the period of transition from steady state to surge state as the research object, the empirical wavelet transform combined with sample entropy characteristics was used to analyze the complex characteristics of the system under different working conditions. First, on the basis of analyzing the characteristics of the dynamic pressure waveform of the system, the empirical wavelet transform combined with the Pearson correlation coefficient was used to extract the signal. Second, the relationship between the sample entropy of the extracted signal and the change of the system working state was analyzed to discuss the influence of the decomposition layer of the empirical wavelet and the dimension of the sample entropy on the analysis result. Finally, white noise was added to the original signal to verify the anti-interference performance of the method. The research results showed that when the system entered the surge state from the steady state, the sample entropy of the system outlet dynamic pressure showed an obviously sudden change characteristics, and its value changed from 0 to about 0.7. From the perspective of the selection of system parameters, the change of sample entropy dimension had little effect on the analysis of system characteristics. In addition, this method had better anti-interference performance.
-
Key words:
- centrifugal compressor /
- surge /
- dynamic pressure /
- empirical wavelet transform /
- sample entropy
-
表 1 各个模态分量与原始信号的相关性
Table 1. Correlation of each modal component with original signal
分层 相关系数 IMF1 IMF2 IMF3 IMF4 IMF5 IMF6 L=4 0.097 0.812 0.302 0.5191 L=5 0.096 0.812 0.302 0.410 0.485 L=6 0.096 0.796 0.300 0.3218 0.165 0.382 表 2 含有白噪声的模态分量与原始信号的相关性
Table 2. Correlation between white noise-containing modal components and original signal
分层 相关系数 IMF1 IMF2 IMF3 IMF4 IMF5 L=5 0.0135 0.799 0.314 0.4078 0.2880 -
[1] GUNADAL S M,GOVARDHAN M. Improvement in stable operating range of a centrifugal compressor with leaned diffuser vanes[J]. Journal of Mechanical Science and Technology,2019,33(11): 5261-5269. doi: 10.1007/s12206-019-1017-3 [2] 刘云龙,吕文浩,鲁悦. 离心式压缩机喘振分析及预防措施[J]. 内燃机与配件,2020(20): 121-122. doi: 10.3969/j.issn.1674-957X.2020.20.054LIU Yunlong,LÜ Wenhao,LU Yue,et al. Analysis and preventive measures of centrifugal compressor surge[J]. Internal Combustion Engine and Parts,2020(20): 121-122. (in Chinese) doi: 10.3969/j.issn.1674-957X.2020.20.054 [3] 刘雁,高宽,何浩,等. 基于多重分形的离心压缩机出口动态压力非线性特征研究及其在喘振识别中的应用[J]. 振动与冲击,2021,40(1): 205-211, 214. doi: 10.13465/j.cnki.jvs.2021.01.027LIU Yan,GAO Kuan,HE Hao,et al. Nonlinear characteristics of centrifugal compressor outlet dynamic pressure based on multifractal and their application in surge identification[J]. Journal of Vibration and Shock,2021,40(1): 205-211, 214. (in Chinese) doi: 10.13465/j.cnki.jvs.2021.01.027 [4] VEPA R,CATTANI C. Modelling and quasilinear control of compressor surge and rotating stall vibrations[J]. Mathematical Problems in Engineering,2010,2010: 314172.1-314172.21. [5] LI Zhiping,ZHANG Peng,PAN Tianyu,et al. Hysteresis behaviors of compressor rotating stall with cusp catastrophic model[J]. Chinese Journal of Aeronautics,2018,31(5): 1075-1084. doi: 10.1016/j.cja.2018.02.010 [6] GBANAIBOLOU J,JIRI P,SURESH S,et al. Influence of fouling on compressor dynamics: experimental and modeling approach[J]. Journal of Engineering for Gas Turbines and Power,2018,140(3): 032603.1-032603.7. [7] 王聪,文彬鹤,司文杰,等. 轴流压气机旋转失速建模与检测: Ⅰ 基于确定学习理论与高阶Moore-Greitzer模型的研究[J]. 自动化学报,2014,40(7): 1265-1277.WANG Cong,WEN Binhe,SI Wenjie,et al. Modeling and detection of rotation stall in axial flow compressors: Part Ⅰ investigation on high-order M-G models via deterministic learning[J]. Acta Automatica Sinica,2014,40(7): 1265-1277. (in Chinese) [8] 刘雁,陈党民,柳黎光,等. 离心式压缩机出口动态压力的单重分形特征研究[J]. 西北工业大学学报,2013,31(1): 60-66. doi: 10.3969/j.issn.1000-2758.2013.01.012LIU Yan,CHEN Dangmin,LIU Liguang,et al. Exploring monofractal characteristics of dynamic pressure at exit of centrifugal compressor[J]. Journal of Northwestern Polytechnical University,2013,31(1): 60-66. (in Chinese) doi: 10.3969/j.issn.1000-2758.2013.01.012 [9] 刘雁,何浩,肖军. 离心式压气机出口动态压力的关联维数特征分析[J]. 航空动力学报,2021,36(2): 300-309. doi: 10.13224/j.cnki.jasp.2021.02.008LIU Yan,HE Hao,XIAO Jun. Correlation dimension characteristics analysis of dynamic pressure at centrifugal compressor outlet[J]. Journal of Aerospace Power,2021,36(2): 300-309. (in Chinese) doi: 10.13224/j.cnki.jasp.2021.02.008 [10] HE Xiao,ZHENG Xinqian. Roles and mechanisms of casing treatment on different scales of flow instability in high pressure ratio centrifugal compressors[J]. Aerospace Science and Technology,2019,84: 734-746. doi: 10.1016/j.ast.2018.10.015 [11] SUN Zhenzhong,ZOU Wangzhi,ZHENG Xinqian. Instability detection of centrifugal compressors by means of acoustic measurements[J]. Aerospace Science and Technology,2018,82/83: 628-635. doi: 10.1016/j.ast.2018.09.006 [12] 刘晨,张文平,曹贻鹏,等. 模化设计对离心压气机气动噪声的影响[J]. 航空动力学报,2019,34(2): 486-494. doi: 10.13224/j.cnki.jasp.2019.02.025LIU Chen,ZHANG Wenping,CAO Yipeng,et al. Effects of modeling design on centrifugal compressor aerodynamic noise[J]. Journal of Aerospace Power,2019,34(2): 486-494. (in Chinese) doi: 10.13224/j.cnki.jasp.2019.02.025 [13] YAN Ruqiang,GAO R X. Approximate entropy as a diagnostic tool for machine health monitoring[J]. Mechanical Systems and Signal Processing,2006,21(2): 824-839. [14] PINCUS S M. Approximate entropy as a complexity measure[J]. Chaos,1995,5(1): 110-117. doi: 10.1063/1.166092 [15] GILLES J. Empirical wavelet transform[J]. IEEE Transactions on Signal Processing,2013,61(16): 3999-4010. doi: 10.1109/TSP.2013.2265222 [16] OUNG Q W, MUTHUSAMY H, BASAH S N, et al. Empirical wavelet transform based features for classification of Parkinson’s disease severity[J]. Journal of Medical Systems, 2018, 42(2): 292-308. [17] KEDADOUCHE M,THOMAS M,TAHAN A. A comparative study between empirical wavelet transforms and empirical mode decomposition methods: application to bearing defect diagnosis[J]. Mechanical Systems and Signal Processing,2016,81: 88-107. doi: 10.1016/j.ymssp.2016.02.049 [18] DAUBECHIES I. Ten lectures on wavelets[M]. Philadelphia, US: Siam Publications, 1992. [19] RICHMAN J S,MOORMAN J R. Physiological time-series analysis using approximate entropy and sample entropy[J]. American Journal of Physiology-Heart and Circulatory Physiology,2000,278(6): 2039-2049. doi: 10.1152/ajpheart.2000.278.6.H2039 [20] ZHANG T,YANG Z,COOTE J H. Cross-sample entropy statistic as a measure of complexity and regularity of renal sympathetic nerve activity in the rat[J]. Experimental Physiology,2007,92(4): 659-669. doi: 10.1113/expphysiol.2007.037150