留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于EWT的离心压气机出口动态压力样本熵分析

刘雁 李宇宸 张赫 肖军

刘雁, 李宇宸, 张赫, 等. 基于EWT的离心压气机出口动态压力样本熵分析[J]. 航空动力学报, 2023, 38(3):655-664 doi: 10.13224/j.cnki.jasp.20210509
引用本文: 刘雁, 李宇宸, 张赫, 等. 基于EWT的离心压气机出口动态压力样本熵分析[J]. 航空动力学报, 2023, 38(3):655-664 doi: 10.13224/j.cnki.jasp.20210509
LIU Yan, LI Yuchen, ZHANG He, et al. Sample entropy characteristics of dynamic pressure at outlet of centrifugal compressor based on EWT[J]. Journal of Aerospace Power, 2023, 38(3):655-664 doi: 10.13224/j.cnki.jasp.20210509
Citation: LIU Yan, LI Yuchen, ZHANG He, et al. Sample entropy characteristics of dynamic pressure at outlet of centrifugal compressor based on EWT[J]. Journal of Aerospace Power, 2023, 38(3):655-664 doi: 10.13224/j.cnki.jasp.20210509

基于EWT的离心压气机出口动态压力样本熵分析

doi: 10.13224/j.cnki.jasp.20210509
基金项目: 国家自然科学基金(51775437); 压缩机技术国家重点实验室开放基金(SKL-YSJ201902); 国家重点研发计划(2019YFB1504601)
详细信息
    作者简介:

    刘雁(1974-),女,副教授,博士,研究方向为非线性动力学和动力系统稳定性。E-mail:liuyan@nwpu.edu.cn

    通讯作者:

    李宇宸(1998-),男,硕士生,研究方向为非线性动力学和动力系统稳定性。E-mail:liyuchen2059@outlook.com

  • 中图分类号: V235.11

Sample entropy characteristics of dynamic pressure at outlet of centrifugal compressor based on EWT

  • 摘要:

    以800 kW离心压气机从稳定状态经过过渡过程进入喘振状态时段的出口动态压力为研究对象,采用经验小波变换并结合样本熵特征,分析了系统在不同工况下的复杂特性。首先,在分析系统动态压力波形特征的基础上,采用经验小波变换并结合皮尔逊相关系数进行信号的提取。其次,研究了提取信号的样本熵与系统工作状态变化的关联关系,并讨论了经验小波的分解层数和样本熵的维数对分析结果的影响。最后,通过将白噪声加入原始信号以验证该方法的抗干扰性能。研究结果显示:当系统由稳态进入喘振状态时,系统出口动态压力的样本熵表现出明显的突变特性,其值由0突变至0.7左右。从系统参数的选择角度,样本熵维数的变化对系统特征的分析影响较小。并且,采用该方法抗干扰性能较好。

     

  • 图 1  EWT分解图

    Figure 1.  EWT spectrum segmentation diagram

    图 2  采集系统

    Figure 2.  Acquisition system

    图 3  离心压气机出口动态压力波形

    Figure 3.  Dynamic pressure waveform at outlet of centrifugal compressor

    图 4  动态压力的频谱图

    Figure 4.  Spectrogram of dynamic pressure

    图 5  出口处样本熵

    Figure 5.  Sample entropy at exit

    图 6  出口动态压力的EWT分解

    Figure 6.  EWT decomposition of outlet dynamic pressure

    图 7  模态分量的样本熵(L=5,m=2)

    Figure 7.  Sample entropy of modal component (L=5, m=2)

    图 8  IMF2的样本熵(L=5)

    Figure 8.  Sample entropy of IMF2 (L=5)

    图 9  含有白噪声的出口动态压力

    Figure 9.  Dynamic pressure at exit with white noise

    图 10  EWT分解结果

    Figure 10.  EWT decomposition results

    图 11  引入比例系数后IMF2的样本熵(L=5)

    Figure 11.  Sample entropy of IMF2 with scale coefficient (L=5)

    表  1  各个模态分量与原始信号的相关性

    Table  1.   Correlation of each modal component with original signal

    分层相关系数
    IMF1IMF2IMF3IMF4IMF5IMF6
    L=40.0970.8120.3020.5191
    L=50.0960.8120.3020.4100.485
    L=60.0960.7960.3000.32180.1650.382
    下载: 导出CSV

    表  2  含有白噪声的模态分量与原始信号的相关性

    Table  2.   Correlation between white noise-containing modal components and original signal

    分层相关系数
    IMF1IMF2IMF3IMF4IMF5
    L=50.01350.7990.3140.40780.2880
    下载: 导出CSV
  • [1] GUNADAL S M,GOVARDHAN M. Improvement in stable operating range of a centrifugal compressor with leaned diffuser vanes[J]. Journal of Mechanical Science and Technology,2019,33(11): 5261-5269. doi: 10.1007/s12206-019-1017-3
    [2] 刘云龙,吕文浩,鲁悦. 离心式压缩机喘振分析及预防措施[J]. 内燃机与配件,2020(20): 121-122. doi: 10.3969/j.issn.1674-957X.2020.20.054

    LIU Yunlong,LÜ Wenhao,LU Yue,et al. Analysis and preventive measures of centrifugal compressor surge[J]. Internal Combustion Engine and Parts,2020(20): 121-122. (in Chinese) doi: 10.3969/j.issn.1674-957X.2020.20.054
    [3] 刘雁,高宽,何浩,等. 基于多重分形的离心压缩机出口动态压力非线性特征研究及其在喘振识别中的应用[J]. 振动与冲击,2021,40(1): 205-211, 214. doi: 10.13465/j.cnki.jvs.2021.01.027

    LIU Yan,GAO Kuan,HE Hao,et al. Nonlinear characteristics of centrifugal compressor outlet dynamic pressure based on multifractal and their application in surge identification[J]. Journal of Vibration and Shock,2021,40(1): 205-211, 214. (in Chinese) doi: 10.13465/j.cnki.jvs.2021.01.027
    [4] VEPA R,CATTANI C. Modelling and quasilinear control of compressor surge and rotating stall vibrations[J]. Mathematical Problems in Engineering,2010,2010: 314172.1-314172.21.
    [5] LI Zhiping,ZHANG Peng,PAN Tianyu,et al. Hysteresis behaviors of compressor rotating stall with cusp catastrophic model[J]. Chinese Journal of Aeronautics,2018,31(5): 1075-1084. doi: 10.1016/j.cja.2018.02.010
    [6] GBANAIBOLOU J,JIRI P,SURESH S,et al. Influence of fouling on compressor dynamics: experimental and modeling approach[J]. Journal of Engineering for Gas Turbines and Power,2018,140(3): 032603.1-032603.7.
    [7] 王聪,文彬鹤,司文杰,等. 轴流压气机旋转失速建模与检测: Ⅰ 基于确定学习理论与高阶Moore-Greitzer模型的研究[J]. 自动化学报,2014,40(7): 1265-1277.

    WANG Cong,WEN Binhe,SI Wenjie,et al. Modeling and detection of rotation stall in axial flow compressors: Part Ⅰ investigation on high-order M-G models via deterministic learning[J]. Acta Automatica Sinica,2014,40(7): 1265-1277. (in Chinese)
    [8] 刘雁,陈党民,柳黎光,等. 离心式压缩机出口动态压力的单重分形特征研究[J]. 西北工业大学学报,2013,31(1): 60-66. doi: 10.3969/j.issn.1000-2758.2013.01.012

    LIU Yan,CHEN Dangmin,LIU Liguang,et al. Exploring monofractal characteristics of dynamic pressure at exit of centrifugal compressor[J]. Journal of Northwestern Polytechnical University,2013,31(1): 60-66. (in Chinese) doi: 10.3969/j.issn.1000-2758.2013.01.012
    [9] 刘雁,何浩,肖军. 离心式压气机出口动态压力的关联维数特征分析[J]. 航空动力学报,2021,36(2): 300-309. doi: 10.13224/j.cnki.jasp.2021.02.008

    LIU Yan,HE Hao,XIAO Jun. Correlation dimension characteristics analysis of dynamic pressure at centrifugal compressor outlet[J]. Journal of Aerospace Power,2021,36(2): 300-309. (in Chinese) doi: 10.13224/j.cnki.jasp.2021.02.008
    [10] HE Xiao,ZHENG Xinqian. Roles and mechanisms of casing treatment on different scales of flow instability in high pressure ratio centrifugal compressors[J]. Aerospace Science and Technology,2019,84: 734-746. doi: 10.1016/j.ast.2018.10.015
    [11] SUN Zhenzhong,ZOU Wangzhi,ZHENG Xinqian. Instability detection of centrifugal compressors by means of acoustic measurements[J]. Aerospace Science and Technology,2018,82/83: 628-635. doi: 10.1016/j.ast.2018.09.006
    [12] 刘晨,张文平,曹贻鹏,等. 模化设计对离心压气机气动噪声的影响[J]. 航空动力学报,2019,34(2): 486-494. doi: 10.13224/j.cnki.jasp.2019.02.025

    LIU Chen,ZHANG Wenping,CAO Yipeng,et al. Effects of modeling design on centrifugal compressor aerodynamic noise[J]. Journal of Aerospace Power,2019,34(2): 486-494. (in Chinese) doi: 10.13224/j.cnki.jasp.2019.02.025
    [13] YAN Ruqiang,GAO R X. Approximate entropy as a diagnostic tool for machine health monitoring[J]. Mechanical Systems and Signal Processing,2006,21(2): 824-839.
    [14] PINCUS S M. Approximate entropy as a complexity measure[J]. Chaos,1995,5(1): 110-117. doi: 10.1063/1.166092
    [15] GILLES J. Empirical wavelet transform[J]. IEEE Transactions on Signal Processing,2013,61(16): 3999-4010. doi: 10.1109/TSP.2013.2265222
    [16] OUNG Q W, MUTHUSAMY H, BASAH S N, et al. Empirical wavelet transform based features for classification of Parkinson’s disease severity[J]. Journal of Medical Systems, 2018, 42(2): 292-308.
    [17] KEDADOUCHE M,THOMAS M,TAHAN A. A comparative study between empirical wavelet transforms and empirical mode decomposition methods: application to bearing defect diagnosis[J]. Mechanical Systems and Signal Processing,2016,81: 88-107. doi: 10.1016/j.ymssp.2016.02.049
    [18] DAUBECHIES I. Ten lectures on wavelets[M]. Philadelphia, US: Siam Publications, 1992.
    [19] RICHMAN J S,MOORMAN J R. Physiological time-series analysis using approximate entropy and sample entropy[J]. American Journal of Physiology-Heart and Circulatory Physiology,2000,278(6): 2039-2049. doi: 10.1152/ajpheart.2000.278.6.H2039
    [20] ZHANG T,YANG Z,COOTE J H. Cross-sample entropy statistic as a measure of complexity and regularity of renal sympathetic nerve activity in the rat[J]. Experimental Physiology,2007,92(4): 659-669. doi: 10.1113/expphysiol.2007.037150
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  198
  • HTML浏览量:  58
  • PDF量:  182
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-12
  • 网络出版日期:  2023-01-08

目录

    /

    返回文章
    返回