留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

气液针栓式喷注器液膜破碎过程和结构的数值研究

林伟 郑水华 柴敏 孙泽楠 金台

林伟, 郑水华, 柴敏, 等. 气液针栓式喷注器液膜破碎过程和结构的数值研究[J]. 航空动力学报, 2023, 38(3):618-629 doi: 10.13224/j.cnki.jasp.20210514
引用本文: 林伟, 郑水华, 柴敏, 等. 气液针栓式喷注器液膜破碎过程和结构的数值研究[J]. 航空动力学报, 2023, 38(3):618-629 doi: 10.13224/j.cnki.jasp.20210514
LIN Wei, ZHENG Shuihua, CHAI Min, et al. Numerical simulation of liquid sheet breakup process and structures in gas-liquid pintle injector[J]. Journal of Aerospace Power, 2023, 38(3):618-629 doi: 10.13224/j.cnki.jasp.20210514
Citation: LIN Wei, ZHENG Shuihua, CHAI Min, et al. Numerical simulation of liquid sheet breakup process and structures in gas-liquid pintle injector[J]. Journal of Aerospace Power, 2023, 38(3):618-629 doi: 10.13224/j.cnki.jasp.20210514

气液针栓式喷注器液膜破碎过程和结构的数值研究

doi: 10.13224/j.cnki.jasp.20210514
基金项目: 国家自然科学基金(51976193); 浙江省自然科学基金(LY21E060009);能源清洁利用国家重点实验室开放基金(ZJU-CEU2020004); 浙江省基础公益计划项目(LGG22E060011)
详细信息
    作者简介:

    林伟(1996-),男,硕士生,主要从事针栓式喷注器雾化机理研究

    通讯作者:

    金台(1988-),男,副教授,博士,主要从事多相湍流流动与燃烧研究。E-mail:jintai@zju.edu.cn

  • 中图分类号: V434.3

Numerical simulation of liquid sheet breakup process and structures in gas-liquid pintle injector

  • 摘要:

    为了更好地认识针栓式喷注器雾化场的结构,基于网格自适应加密技术以及VOF (volume of fraction)方法追踪气液的分界面,采用realizable k-ε湍流模型模拟整个流动过程,还原了不同时刻气/液撞击的初次破碎过程,数值模拟结果与高速摄影试验结果定性定量对比均吻合较好,验证了数值方法的准确性。进一步对针栓式喷注器气/液撞击的初次破碎过程、内部流场涡结构、速度场进行分析,研究了初次破碎雾化的动力学过程和机理。研究结果表明:液桥的形成主要是由液洞的扩展和拉伸、合并而形成,而液滴主要是由中心液膜拉伸、液丝断裂以及液桥断裂而形成,液膜破碎阶段形成的涡结构是造成液膜断裂的主要原因。

     

  • 图 1  针栓式喷注器的结构及边界条件

    Figure 1.  Structure of pintle injector and boundary conditions

    图 2  局部网格加密

    Figure 2.  Zoomed local mesh

    图 3  基于梯度的自适应网格细化

    Figure 3.  Adaptive mesh refinement based on gradient

    图 4  模拟与试验喷雾的图像对比

    Figure 4.  Comparison of the simulated sprays with the experimental spray images

    图 5  喷雾锥角的比较

    Figure 5.  Comparisons of the spray cone angle

    图 6  三种不同网格对应的模拟雾化模式

    Figure 6.  Spray patterns from simulations with three different grids

    图 7  不同时刻液膜破碎过程(Lopen=0.4 mm)

    Figure 7.  Breakup process of liquid sheet at different instants (Lopen = 0.4 mm)

    图 8  不同时刻液膜的形成和破碎

    Figure 8.  Formation and breakup of liquid sheet at different instants

    图 9  液膜上液洞的形成及液桥的产生

    Figure 9.  Formation of liquid hole on liquid sheet and formation of liquid bridge

    图 10  K-H不稳定波的发展

    Figure 10.  Development of K-H unstable wave

    图 11  多个液洞合并及液桥的产生

    Figure 11.  Merge of multiple liquid holes and formation of liquid bridge

    图 12  中心液膜形成的液滴

    Figure 12.  Droplets formed in the central liquid sheet region

    图 13  液丝断裂形成的液滴

    Figure 13.  Droplets formation due to the fracture of the liquid ligaments

    图 14  液桥断裂形成的液滴

    Figure 14.  Droplets formation due to the fracture of the liquid bridge

    图 15  速度等值线(Lopen=0.4 mm,$\dot m_{{\rm{liquid}}} $=45.2 g/s)

    Figure 15.  Velocity contour (Lopen=0.4 mm,$\dot m_{{\rm{liquid}}} $=45.2 g/s)

    图 16  速度流线图(Lopen=0.4 mm,$ \dot m_{{\rm{liquid}}} $=45.2 g/s)

    Figure 16.  Velocity streamline (Lopen=0.4 mm,$ \dot m_{{\rm{liquid}}} $=45.2 g/s)

    图 17  液膜厚度

    Figure 17.  Liquid film thickness

    图 18  液膜厚度随时间的变化

    Figure 18.  Temporal evolution of liquid film thickness

    图 19  液膜破碎长度的定义

    Figure 19.  Definition of liquid sheet breakup length

    图 20  液膜破碎长度随时间的变化

    Figure 20.  Temporal evolution of liquid sheet breakup length

    表  1  针栓式喷注器的几何尺寸

    Table  1.   Geometrical dimensions of the pintle injector

    参数数值参数数值
    Dpost/mm8.0θpost/(°)30
    Dcg/mm4.55 θpt/(°)40
    Dpr/mm3.0rpost/mm3.0
    Dpt/mm8.0tpost/mm0.5
    tann/mm0.5Lopen/mm0.4
    下载: 导出CSV
  • [1] 岳春国,李进贤,冯喜平,等. 针栓式变推力火箭发动机技术现状与发展探索[J]. 世界科技研究与发展,2008,16(5): 609-612. doi: 10.3969/j.issn.1006-6055.2008.05.023

    YUE Chunguo,LI Jinxian,FENG Xiping,et al. The research on technology actuality and development of injector variable thrust rocket engine[J]. World Sci-Tech R&D,2008,16(5): 609-612. (in Chinese) doi: 10.3969/j.issn.1006-6055.2008.05.023
    [2] 岳春国,李进贤,侯晓,等. 变推力液体火箭发动机综述[J]. 中国科学(E辑: 技术科学),2009,39(3): 464-468.

    YUE Chunguo,LI Jinxian,HOU Xiao,et al. Review on throttling liquid rocket engine[J]. Science in China Series E: Technological Sciences,2009,39(3): 464-468. (in Chinese)
    [3] 王凯,雷凡培,杨岸龙,等. 针栓式喷注单元膜束撞击雾化混合过程数值模拟[J]. 航空学报,2020,41(9): 96-110.

    WANG Kai,LEI Fanpei,YANG Anlong,et al. Numerical simulation of spray and mixing process of impingement between sheet and jet in pintle injector element[J]. Acta Aeronautica et Astronautica Sinica,2020,41(9): 96-110. (in Chinese)
    [4] DRESSLER G, BAUER J. TRW pintle engine heritage and performance characteristics[R]. AIAA-2000-3871, 2000.
    [5] ELVERUM G. The decent engine for the lunar module[R]. AIAA 67-521, 1967.
    [6] 雷娟萍,兰晓辉,章荣军,等. 嫦娥三号探测器 7500 N变推力发动机研制[J]. 中国科学: 技术科学,2014,44(6): 569-575.

    LEI Juanping,LAN Xiaohui,ZHANG Rongjun,et al. The development of 7500 N variable thrust engine for Chang’E-3[J]. Science in China Series E: Technological Sciences,2014,44(6): 569-575. (in Chinese)
    [7] ADAM D. Mars science laboratory entry, descent, and landing system development challenges[J]. Journal of Spacecraft and Rockets,2014,51(4): 994-1003. doi: 10.2514/1.A32866
    [8] 张雪松. 猎鹰火箭的基础: 不断升级的梅林发动机[J]. 卫星与网络,2017,18(6): 40-41. doi: 10.3969/j.issn.1672-965X.2017.06.009

    ZHANG Xuesong. Fundamentals of the falcon rocket: the upgrading merlin engine[J]. Satellite and Internet,2017,18(6): 40-41. (in Chinese) doi: 10.3969/j.issn.1672-965X.2017.06.009
    [9] 袁宇. 猎鹰火箭发动机设计特点[J]. 太空探索,2014,34(7): 19-20. doi: 10.3969/j.issn.1009-6205.2014.07.013

    YUAN Yu. Design characteristic of falcon rocket engine[J]. Space Exploration,2014,34(7): 19-20. (in Chinese) doi: 10.3969/j.issn.1009-6205.2014.07.013
    [10] 成鹏. 变推力火箭发动机喷雾燃烧动态过程研究[D]. 长沙: 国防科技大学, 2018.

    CHENG Peng. The dynamics of spray combustion in variable thrust rocket engines[D]. Changsha: National University of Defense Technology, 2018. (in Chinese)
    [11] CHENG P,LI Q. On the prediction of spray angle of liquid-liquid pintle injectors[J]. Acta Astronautica,2017,138(9): 145-151.
    [12] SON M,YU K,KOO J,et al. Effects of momentum ratio and weber number on spray half angles of liquid controlled pintle injector[J]. Journal of Thermal Science,2015,24(1): 37-43. doi: 10.1007/s11630-015-0753-7
    [13] 陈慧源,李清廉,成鹏,等. 针栓喷注器径向孔形状对喷雾特性影响实验研究[J]. 推进技术,2022,43(3): 201-207. doi: 10.13675/j.cnki.tjjs.200572

    CHEN Huiyuan,LI Qinglian,CHENG Peng,et al. Experimental research on effects of shape of radial orifice on spray characteristics of pintle injector[J]. Journal of Propulsion Technology,2022,43(3): 201-207. (in Chinese) doi: 10.13675/j.cnki.tjjs.200572
    [14] ZHOU Rui,SHEN Chibing,JIN Xuan. Numerical study on the morphology of a liquid-liquid pintle injector element primary breakup spray[J]. Journal of Zhejiang University: Science A (Applied Physics & Engineering),2020,21(8): 684-694.
    [15] 张彬,成鹏,李清廉,等. 液体横向射流在气膜作用下的破碎过程[J]. 物理学报,2021,70(5): 230-241.

    ZHANG Bin,CHENG Peng,LI Qinglian,et al. Breakup process of liquid jet in gas film[J]. Acta Physica Sinica,2021,70(5): 230-241. (in Chinese)
    [16] 张波涛,李平,杨宝娥. 气液针栓喷注器在节流水平下的雾化角模型分析[J]. 宇航学报,2021,42(2): 249-258. doi: 10.3873/j.issn.1000-1328.2021.02.013

    ZHANG Botao,LI Ping,YANG Baoe. Analysis of spray angle model of gas-liquid pintle injector at throttling level[J]. Journal of Astronautics,2021,42(2): 249-258. (in Chinese) doi: 10.3873/j.issn.1000-1328.2021.02.013
    [17] 张波涛,李平,杨岸龙,等. 节流水平对气液针栓喷注单元雾化特性的影响[J]. 航空动力学报,2022,37(4): 791-801.

    ZHANG Botao,LI Ping,YANG Anlong,et al. Effects of throttling level on spray characteristics of gas-liquid pintle injector unit[J]. Journal of Aerospace Power,2022,37(4): 791-801. (in Chinese)
    [18] KANMANIRAJ A,SON M. Lagrangian approach to axisymmetric spray simulation of pintle injector for liquid rocket engines[J]. Atomization and Sprays,2018,28(5): 443-458. doi: 10.1615/AtomizSpr.2018022652
    [19] 邵长孝. 液体旋流雾化的直接数值模拟研究[D]. 杭州: 浙江大学, 2017.

    SHAO Changxiao. Direct numerical simulation of liquid swirling atomization[D]. Hangzhou: Zhejiang University, 2017. (in Chinese)
    [20] 俞南嘉,鲍启林,张洋,等. 针栓式液氧/煤油发动机燃烧数值仿真[J]. 火箭推进,2018,44(4): 23-29. doi: 10.3969/j.issn.1672-9374.2018.04.004

    YU Nanjia,BAO Qilin,ZHANG Yang,et al. Numerical simulation of combustion for LOX/kerosene engine with pintle injector[J]. Journal of Rocket Propulsion,2018,44(4): 23-29. (in Chinese) doi: 10.3969/j.issn.1672-9374.2018.04.004
    [21] 刘赵淼,李泽轩,林家源,等. 压力条件对旋流槽数不同的离心式喷嘴液膜破碎及雾化的影响研究[J]. 机械工程学报,2021,57(4): 247-256. doi: 10.3901/JME.2021.04.247

    LIU Zhaomiao,LI Zexuan,LIN Jiayuan,et al. Effect of the slot number on the breakup and atomization of liquid film in swirl nozzle[J]. Journal of mechanical engineering,2021,57(4): 247-256. (in Chinese) doi: 10.3901/JME.2021.04.247
    [22] 楚威,李修乾,仝毅恒,等. 液体中心式同轴离心喷嘴液膜破碎特性仿真研究[J]. 推进技术,2021,42(7): 1522-1533.

    CHU Wei,LI Xiuqian,TONG Yiheng,et al. Numerical study on breakup characteristics of liquid film of liquid-centered swirl coaxial injectors[J]. Journal of Propulsion Technology,2021,42(7): 1522-1533. (in Chinese)
    [23] 李颖. 离心式喷嘴内部流动特性研究[D]. 大连: 大连理工大学, 2017.

    LI Ying. Investigation on the flow characteristics of pressure swirl nozzle[D]. Dalian Liaoning: Dalian University of Technology, 2017. (in Chinese)
  • 加载中
图(20) / 表(1)
计量
  • 文章访问数:  309
  • HTML浏览量:  39
  • PDF量:  329
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-14
  • 网络出版日期:  2022-11-22

目录

    /

    返回文章
    返回