Numerical simulation of liquid sheet breakup process and structures in gas-liquid pintle injector
-
摘要:
为了更好地认识针栓式喷注器雾化场的结构,基于网格自适应加密技术以及VOF (volume of fraction)方法追踪气液的分界面,采用realizable
k-ε 湍流模型模拟整个流动过程,还原了不同时刻气/液撞击的初次破碎过程,数值模拟结果与高速摄影试验结果定性定量对比均吻合较好,验证了数值方法的准确性。进一步对针栓式喷注器气/液撞击的初次破碎过程、内部流场涡结构、速度场进行分析,研究了初次破碎雾化的动力学过程和机理。研究结果表明:液桥的形成主要是由液洞的扩展和拉伸、合并而形成,而液滴主要是由中心液膜拉伸、液丝断裂以及液桥断裂而形成,液膜破碎阶段形成的涡结构是造成液膜断裂的主要原因。Abstract:Numerical simulations of the primary atomization in the gas-liquid pintle injector were conducted, using the VOF (volume of fraction) method with the adaptive mesh refinement to capture the gas-liquid interface. The realizable
k -ε turbulence model was adopted for the turbulence modelling. The entire breakup process and the gas-liquid interaction at different instants were captured. The numerical results were qualitatively and quantitatively in good agreement with the high-speed photograph measurement results, which verified the accuracy of the numerical method. The breakup process and mechanism of the primary breakup and atomization were studied by analyzing the evolution of the gas-liquid interface, the vortex structure of the flow field and the velocity field in the pintle injector. The results showed that the formation of the liquid bridge was mainly caused by the expansion, stretching and coalescence of the liquid hole, while the droplet was mainly caused by the stretching of the central liquid sheet, the fractures of the liquid ligament and liquid bridge. The fracture and displacement of liquid sheet was mainly attributed to the vortex structure formed in the liquid sheet breaking stage. -
表 1 针栓式喷注器的几何尺寸
Table 1. Geometrical dimensions of the pintle injector
参数 数值 参数 数值 Dpost/mm 8.0 θpost/(°) 30 Dcg/mm 4.55 θpt/(°) 40 Dpr/mm 3.0 rpost/mm 3.0 Dpt/mm 8.0 tpost/mm 0.5 tann/mm 0.5 Lopen/mm 0.4 -
[1] 岳春国,李进贤,冯喜平,等. 针栓式变推力火箭发动机技术现状与发展探索[J]. 世界科技研究与发展,2008,16(5): 609-612. doi: 10.3969/j.issn.1006-6055.2008.05.023YUE Chunguo,LI Jinxian,FENG Xiping,et al. The research on technology actuality and development of injector variable thrust rocket engine[J]. World Sci-Tech R&D,2008,16(5): 609-612. (in Chinese) doi: 10.3969/j.issn.1006-6055.2008.05.023 [2] 岳春国,李进贤,侯晓,等. 变推力液体火箭发动机综述[J]. 中国科学(E辑: 技术科学),2009,39(3): 464-468.YUE Chunguo,LI Jinxian,HOU Xiao,et al. Review on throttling liquid rocket engine[J]. Science in China Series E: Technological Sciences,2009,39(3): 464-468. (in Chinese) [3] 王凯,雷凡培,杨岸龙,等. 针栓式喷注单元膜束撞击雾化混合过程数值模拟[J]. 航空学报,2020,41(9): 96-110.WANG Kai,LEI Fanpei,YANG Anlong,et al. Numerical simulation of spray and mixing process of impingement between sheet and jet in pintle injector element[J]. Acta Aeronautica et Astronautica Sinica,2020,41(9): 96-110. (in Chinese) [4] DRESSLER G, BAUER J. TRW pintle engine heritage and performance characteristics[R]. AIAA-2000-3871, 2000. [5] ELVERUM G. The decent engine for the lunar module[R]. AIAA 67-521, 1967. [6] 雷娟萍,兰晓辉,章荣军,等. 嫦娥三号探测器 7500 N变推力发动机研制[J]. 中国科学: 技术科学,2014,44(6): 569-575.LEI Juanping,LAN Xiaohui,ZHANG Rongjun,et al. The development of 7500 N variable thrust engine for Chang’E-3[J]. Science in China Series E: Technological Sciences,2014,44(6): 569-575. (in Chinese) [7] ADAM D. Mars science laboratory entry, descent, and landing system development challenges[J]. Journal of Spacecraft and Rockets,2014,51(4): 994-1003. doi: 10.2514/1.A32866 [8] 张雪松. 猎鹰火箭的基础: 不断升级的梅林发动机[J]. 卫星与网络,2017,18(6): 40-41. doi: 10.3969/j.issn.1672-965X.2017.06.009ZHANG Xuesong. Fundamentals of the falcon rocket: the upgrading merlin engine[J]. Satellite and Internet,2017,18(6): 40-41. (in Chinese) doi: 10.3969/j.issn.1672-965X.2017.06.009 [9] 袁宇. 猎鹰火箭发动机设计特点[J]. 太空探索,2014,34(7): 19-20. doi: 10.3969/j.issn.1009-6205.2014.07.013YUAN Yu. Design characteristic of falcon rocket engine[J]. Space Exploration,2014,34(7): 19-20. (in Chinese) doi: 10.3969/j.issn.1009-6205.2014.07.013 [10] 成鹏. 变推力火箭发动机喷雾燃烧动态过程研究[D]. 长沙: 国防科技大学, 2018.CHENG Peng. The dynamics of spray combustion in variable thrust rocket engines[D]. Changsha: National University of Defense Technology, 2018. (in Chinese) [11] CHENG P,LI Q. On the prediction of spray angle of liquid-liquid pintle injectors[J]. Acta Astronautica,2017,138(9): 145-151. [12] SON M,YU K,KOO J,et al. Effects of momentum ratio and weber number on spray half angles of liquid controlled pintle injector[J]. Journal of Thermal Science,2015,24(1): 37-43. doi: 10.1007/s11630-015-0753-7 [13] 陈慧源,李清廉,成鹏,等. 针栓喷注器径向孔形状对喷雾特性影响实验研究[J]. 推进技术,2022,43(3): 201-207. doi: 10.13675/j.cnki.tjjs.200572CHEN Huiyuan,LI Qinglian,CHENG Peng,et al. Experimental research on effects of shape of radial orifice on spray characteristics of pintle injector[J]. Journal of Propulsion Technology,2022,43(3): 201-207. (in Chinese) doi: 10.13675/j.cnki.tjjs.200572 [14] ZHOU Rui,SHEN Chibing,JIN Xuan. Numerical study on the morphology of a liquid-liquid pintle injector element primary breakup spray[J]. Journal of Zhejiang University: Science A (Applied Physics & Engineering),2020,21(8): 684-694. [15] 张彬,成鹏,李清廉,等. 液体横向射流在气膜作用下的破碎过程[J]. 物理学报,2021,70(5): 230-241.ZHANG Bin,CHENG Peng,LI Qinglian,et al. Breakup process of liquid jet in gas film[J]. Acta Physica Sinica,2021,70(5): 230-241. (in Chinese) [16] 张波涛,李平,杨宝娥. 气液针栓喷注器在节流水平下的雾化角模型分析[J]. 宇航学报,2021,42(2): 249-258. doi: 10.3873/j.issn.1000-1328.2021.02.013ZHANG Botao,LI Ping,YANG Baoe. Analysis of spray angle model of gas-liquid pintle injector at throttling level[J]. Journal of Astronautics,2021,42(2): 249-258. (in Chinese) doi: 10.3873/j.issn.1000-1328.2021.02.013 [17] 张波涛,李平,杨岸龙,等. 节流水平对气液针栓喷注单元雾化特性的影响[J]. 航空动力学报,2022,37(4): 791-801.ZHANG Botao,LI Ping,YANG Anlong,et al. Effects of throttling level on spray characteristics of gas-liquid pintle injector unit[J]. Journal of Aerospace Power,2022,37(4): 791-801. (in Chinese) [18] KANMANIRAJ A,SON M. Lagrangian approach to axisymmetric spray simulation of pintle injector for liquid rocket engines[J]. Atomization and Sprays,2018,28(5): 443-458. doi: 10.1615/AtomizSpr.2018022652 [19] 邵长孝. 液体旋流雾化的直接数值模拟研究[D]. 杭州: 浙江大学, 2017.SHAO Changxiao. Direct numerical simulation of liquid swirling atomization[D]. Hangzhou: Zhejiang University, 2017. (in Chinese) [20] 俞南嘉,鲍启林,张洋,等. 针栓式液氧/煤油发动机燃烧数值仿真[J]. 火箭推进,2018,44(4): 23-29. doi: 10.3969/j.issn.1672-9374.2018.04.004YU Nanjia,BAO Qilin,ZHANG Yang,et al. Numerical simulation of combustion for LOX/kerosene engine with pintle injector[J]. Journal of Rocket Propulsion,2018,44(4): 23-29. (in Chinese) doi: 10.3969/j.issn.1672-9374.2018.04.004 [21] 刘赵淼,李泽轩,林家源,等. 压力条件对旋流槽数不同的离心式喷嘴液膜破碎及雾化的影响研究[J]. 机械工程学报,2021,57(4): 247-256. doi: 10.3901/JME.2021.04.247LIU Zhaomiao,LI Zexuan,LIN Jiayuan,et al. Effect of the slot number on the breakup and atomization of liquid film in swirl nozzle[J]. Journal of mechanical engineering,2021,57(4): 247-256. (in Chinese) doi: 10.3901/JME.2021.04.247 [22] 楚威,李修乾,仝毅恒,等. 液体中心式同轴离心喷嘴液膜破碎特性仿真研究[J]. 推进技术,2021,42(7): 1522-1533.CHU Wei,LI Xiuqian,TONG Yiheng,et al. Numerical study on breakup characteristics of liquid film of liquid-centered swirl coaxial injectors[J]. Journal of Propulsion Technology,2021,42(7): 1522-1533. (in Chinese) [23] 李颖. 离心式喷嘴内部流动特性研究[D]. 大连: 大连理工大学, 2017.LI Ying. Investigation on the flow characteristics of pressure swirl nozzle[D]. Dalian Liaoning: Dalian University of Technology, 2017. (in Chinese)